找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 29th International W Costas Iliopoulos,Hon Wai Leong,Wing-Kin Sung Conference proceedings 2018 Springer Internati

[復(fù)制鏈接]
樓主: 忠誠
11#
發(fā)表于 2025-3-23 11:16:33 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:00 | 只看該作者
https://doi.org/10.1007/978-1-349-25800-0k, and consider the problem of locating a set of . sinks on a dynamic flow path network with . vertices, where people are located, that minimizes the sum of the evacuation times of all evacuees. Our minsum model is more difficult to deal with than the minmax model, because the cost function is not m
13#
發(fā)表于 2025-3-23 20:07:02 | 只看該作者
14#
發(fā)表于 2025-3-24 01:06:48 | 只看該作者
https://doi.org/10.1007/978-1-349-26945-7 algorithm is known for . parameterized by the size of the pattern . [Guillemot and Marx 2014], the high complexity of this algorithm makes it impractical for most instances. In this paper we approach the PP problem from .-track permutations, . those permutations that are the union of . increasing p
15#
發(fā)表于 2025-3-24 05:28:42 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:28 | 只看該作者
https://doi.org/10.1007/978-3-540-85138-7edding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most . planar graphs, using edge removal and node contraction. The . problem is then solved on the planar graphs using established polynomia
17#
發(fā)表于 2025-3-24 13:00:29 | 只看該作者
Helge Toutenburg,Philipp Kn?felsed, a notable example being .-club, which is a subgraph where each vertex is at distance at most . to the others. Here we consider the problem of covering a given graph with the minimum number of .-clubs. We study the computational and approximation complexity of this problem, when . is equal to 2
18#
發(fā)表于 2025-3-24 14:59:48 | 只看該作者
19#
發(fā)表于 2025-3-24 19:45:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:29:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸州市| 陆川县| 隆昌县| 余庆县| 图木舒克市| 常州市| 西平县| 台前县| 高淳县| 恭城| 阿拉善右旗| 大安市| 花垣县| 永济市| 全州县| 永善县| 浦东新区| 康定县| 太白县| 华阴市| 余姚市| 高雄市| 高邮市| 环江| 临朐县| 呼图壁县| 中方县| 昌宁县| 永仁县| 盖州市| 聂拉木县| 东方市| 儋州市| 玛沁县| 家居| 全椒县| 凤台县| 长海县| 鲁甸县| 洮南市| 新平|