找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algebraic Topology; Dmitry Kozlov Textbook 20081st edition Springer-Verlag Berlin Heidelberg 2008 Algebraic topology.Charact

[復(fù)制鏈接]
查看: 10357|回復(fù): 66
樓主
發(fā)表于 2025-3-21 18:47:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Combinatorial Algebraic Topology
編輯Dmitry Kozlov
視頻videohttp://file.papertrans.cn/230/229874/229874.mp4
概述Includes supplementary material:
叢書名稱Algorithms and Computation in Mathematics
圖書封面Titlebook: Combinatorial Algebraic Topology;  Dmitry Kozlov Textbook 20081st edition Springer-Verlag Berlin Heidelberg 2008 Algebraic topology.Charact
描述.Combinatorial algebraic topology is a fascinating and dynamic field at the crossroads of algebraic topology and discrete mathematics. This volume is the first comprehensive treatment of the subject in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology, including Stiefel-Whitney characteristic classes, which are needed for the later parts. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Our presentation of standard topics is quite different from that of existing texts. In addition, several new themes, such as spectral sequences, are included. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms. The main benefit for the reader will be the prospect of fairly quickly getting to the forefront of modern research in this active field..
出版日期Textbook 20081st edition
關(guān)鍵詞Algebraic topology; Characteristic class; Homotopy; cofibration; combinatorics; discrete mathematics; fibr
版次1
doihttps://doi.org/10.1007/978-3-540-71962-5
isbn_softcover978-3-540-73051-4
isbn_ebook978-3-540-71962-5Series ISSN 1431-1550
issn_series 1431-1550
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Combinatorial Algebraic Topology影響因子(影響力)




書目名稱Combinatorial Algebraic Topology影響因子(影響力)學(xué)科排名




書目名稱Combinatorial Algebraic Topology網(wǎng)絡(luò)公開度




書目名稱Combinatorial Algebraic Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Combinatorial Algebraic Topology被引頻次




書目名稱Combinatorial Algebraic Topology被引頻次學(xué)科排名




書目名稱Combinatorial Algebraic Topology年度引用




書目名稱Combinatorial Algebraic Topology年度引用學(xué)科排名




書目名稱Combinatorial Algebraic Topology讀者反饋




書目名稱Combinatorial Algebraic Topology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:48:36 | 只看該作者
https://doi.org/10.1057/9781137025135mpler computations of homology groups of some chain complexes. The natural question of putting the computed information together to yield the homology groups of the original complex has an elegant algebraic answer due to Eilenberg: the so-called ..
地板
發(fā)表于 2025-3-22 08:35:49 | 只看該作者
Situation Recognition Using EventShopom the one-element category associated to the group . to .. Then, as we have pointed out earlier in Subsection 4.4.3, it is natural to define . to be the colimit of this functor. As a result, . can in general turn out to be an acyclic category, which is not necessarily a poset.
5#
發(fā)表于 2025-3-22 09:27:21 | 只看該作者
6#
發(fā)表于 2025-3-22 13:45:36 | 只看該作者
7#
發(fā)表于 2025-3-22 18:21:28 | 只看該作者
8#
發(fā)表于 2025-3-22 21:19:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:07:34 | 只看該作者
https://doi.org/10.1007/978-3-540-71962-5Algebraic topology; Characteristic class; Homotopy; cofibration; combinatorics; discrete mathematics; fibr
10#
發(fā)表于 2025-3-23 05:34:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康保县| 安吉县| 榆社县| 霍邱县| 军事| 台州市| 怀集县| 闽清县| 焉耆| 朝阳市| 沧州市| 泌阳县| 西青区| 庐江县| 石渠县| 黔东| 通许县| 绥江县| 肇州县| 四平市| 固镇县| 涡阳县| 长治县| 突泉县| 鱼台县| 修文县| 旺苍县| 德州市| 罗定市| 泌阳县| 丽水市| 类乌齐县| 巧家县| 昌图县| 廉江市| 磐安县| 吉木萨尔县| 莲花县| 拉孜县| 珲春市| 贵定县|