找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algebraic Geometry; Levico Terme, Italy Aldo Conca,Sandra Di Rocco,Filippo Viviani Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Jefferson
11#
發(fā)表于 2025-3-23 12:21:42 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:22 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:00 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:52 | 只看該作者
Combinatorial Algebraic Geometry978-3-319-04870-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
15#
發(fā)表于 2025-3-24 04:50:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:22:30 | 只看該作者
Ludivine Sinzelle,Nicolas Pollet. Their geometry and combinatorics have a fruitful interplay leading to fundamental insight in both directions. These notes will illustrate geometrical phenomena, in algebraic geometry and neighboring fields, which are characterized by a Cayley structure. Examples are projective duality of toric varieties and polyhedral adjunction theory.
17#
發(fā)表于 2025-3-24 12:32:40 | 只看該作者
Homologous Recombination in Mammalse. The aim of these notes is to present an introduction to this important class of manifolds, trying to survey the several different perspectives from which Hermitian symmetric manifolds can be studied.
18#
發(fā)表于 2025-3-24 18:47:32 | 只看該作者
19#
發(fā)表于 2025-3-24 22:14:31 | 只看該作者
Lilya Kopertekh,Joachim Schiemanno large, in fact, that subvarieties stable under those symmetry groups are defined by finitely many orbits of equations—whence the title .. It is not the purpose of these notes to give a systematic, exhaustive treatment of such varieties, but rather to discuss a few “personal favourites”: exciting e
20#
發(fā)表于 2025-3-25 02:03:41 | 只看該作者
Gene Site-Specific Insertion in Plantslosure is a topological invariant of that embedded projective variety, known as its maximum likelihood degree. We present an introduction to this theory and its statistical motivations. Many favorite objects from combinatorial algebraic geometry are featured: toric varieties, .-discriminants, hyperp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马鞍山市| 油尖旺区| 台湾省| 瑞安市| 桑日县| 克东县| 泸水县| 剑川县| 北流市| 大兴区| 辉县市| 莱州市| 庆安县| 顺平县| 格尔木市| 西充县| 凤山县| 安龙县| 宁陵县| 巴彦县| 庄河市| 平罗县| 鹤岗市| 玉溪市| 延津县| 江安县| 平陆县| 潞西市| 包头市| 天等县| 钟山县| 南澳县| 安国市| 县级市| 长治市| 巫山县| 饶平县| 天津市| 漳州市| 正安县| 阿合奇县|