找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algebraic Geometry; Levico Terme, Italy Aldo Conca,Sandra Di Rocco,Filippo Viviani Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Jefferson
11#
發(fā)表于 2025-3-23 12:21:42 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:22 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:00 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:52 | 只看該作者
Combinatorial Algebraic Geometry978-3-319-04870-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
15#
發(fā)表于 2025-3-24 04:50:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:22:30 | 只看該作者
Ludivine Sinzelle,Nicolas Pollet. Their geometry and combinatorics have a fruitful interplay leading to fundamental insight in both directions. These notes will illustrate geometrical phenomena, in algebraic geometry and neighboring fields, which are characterized by a Cayley structure. Examples are projective duality of toric varieties and polyhedral adjunction theory.
17#
發(fā)表于 2025-3-24 12:32:40 | 只看該作者
Homologous Recombination in Mammalse. The aim of these notes is to present an introduction to this important class of manifolds, trying to survey the several different perspectives from which Hermitian symmetric manifolds can be studied.
18#
發(fā)表于 2025-3-24 18:47:32 | 只看該作者
19#
發(fā)表于 2025-3-24 22:14:31 | 只看該作者
Lilya Kopertekh,Joachim Schiemanno large, in fact, that subvarieties stable under those symmetry groups are defined by finitely many orbits of equations—whence the title .. It is not the purpose of these notes to give a systematic, exhaustive treatment of such varieties, but rather to discuss a few “personal favourites”: exciting e
20#
發(fā)表于 2025-3-25 02:03:41 | 只看該作者
Gene Site-Specific Insertion in Plantslosure is a topological invariant of that embedded projective variety, known as its maximum likelihood degree. We present an introduction to this theory and its statistical motivations. Many favorite objects from combinatorial algebraic geometry are featured: toric varieties, .-discriminants, hyperp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜川县| 亚东县| 大宁县| 修水县| 宾阳县| 桂东县| 曲麻莱县| 抚顺市| 尤溪县| 白城市| 浙江省| 河津市| 伊春市| 鄂托克旗| 济宁市| 庆云县| 岢岚县| 贵州省| 惠东县| 灯塔市| 呈贡县| 万宁市| 静海县| 河北区| 蓬莱市| 张家口市| 定兴县| 平果县| 平泉县| 泽州县| 临澧县| 旬邑县| 连平县| 同仁县| 洪洞县| 满洲里市| 南康市| 始兴县| 镇康县| 印江| 德惠市|