找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Combating Online Hostile Posts in Regional Languages during Emergency Situation; First International Tanmoy Chakraborty,Kai Shu,Md Shad Ak

[復(fù)制鏈接]
樓主: 添加劑
51#
發(fā)表于 2025-3-30 09:16:19 | 只看該作者
https://doi.org/10.1007/BFb0005209the CONSTRAINT Workshop at AAAI 2021. The shared tasks are ‘COVID19 Fake News Detection in English’ and ‘Hostile Post Detection in Hindi’. The tasks attracted 166 and 44 team submissions respectively. The most successful models were BERT or its variations.
52#
發(fā)表于 2025-3-30 14:18:11 | 只看該作者
53#
發(fā)表于 2025-3-30 20:00:08 | 只看該作者
https://doi.org/10.1007/978-3-319-52797-0Fake News Detection task in English, a binary classification task. This paper chooses RoBERTa as the pre-trained model, and tries to build a graph from news datasets. Finally, our system achieves an accuracy of 98.64% and an F1-score of 98.64% on the test dataset. Subtask2 is a Hostile Post Detectio
54#
發(fā)表于 2025-3-31 00:40:06 | 只看該作者
Epilogue: The Sinister After Milton, We experimented with the pre-trained model based on the transformer and adopted the method of Ensemble Learning. We observed that the model ensemble was able to obtain better text classification results than a single model, the weighted fine-grained F1 score of our model in subtask B was 0.643998 (
55#
發(fā)表于 2025-3-31 01:11:46 | 只看該作者
56#
發(fā)表于 2025-3-31 07:09:20 | 只看該作者
Sinkholes induced by engineering works,xtensive analysis to understand the pattern of the data distribution. To achieve an F1 score of 0.96, we incorporate external sources of misinformation and fine tune multiple state of the art pretrained deep learning models. In the end, we visualise the true and false positives predicted by our mode
57#
發(fā)表于 2025-3-31 11:29:43 | 只看該作者
https://doi.org/10.1007/b138363h the weighted . score of 0.9859 on the test set. Specifically, we proposed an ensemble method of different pre-trained language models such as BERT, Roberta, Ernie, etc. with various training strategies including warm-up, learning rate schedule and .-fold cross-validation. We also conduct an extens
58#
發(fā)表于 2025-3-31 13:37:22 | 只看該作者
Sinkholes induced by engineering works,scussed on social media. However, not all social media posts are truthful. Many of them spread fake news that cause panic among readers, misinform people and thus exacerbate the effect of the pandemic. In this paper, we present our results at the Constraint@AAAI2021 Shared Task: COVID-19 Fake News D
59#
發(fā)表于 2025-3-31 19:53:36 | 只看該作者
60#
發(fā)表于 2025-3-31 23:43:08 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原阳县| 横峰县| 清丰县| 库伦旗| 二连浩特市| 仁化县| 宝应县| 炉霍县| 象州县| 绥芬河市| 海宁市| 道孚县| 包头市| 都江堰市| 霞浦县| 类乌齐县| 襄樊市| 通州区| 上饶县| 连平县| 黔南| 蒙山县| 新闻| 芮城县| 汤原县| 高淳县| 根河市| 任丘市| 无棣县| 商河县| 九台市| 蒙自县| 宽城| 普格县| 那曲县| 彰化市| 喀什市| 乌什县| 天峨县| 通江县| 洛南县|