找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Combating Online Hostile Posts in Regional Languages during Emergency Situation; First International Tanmoy Chakraborty,Kai Shu,Md Shad Ak

[復(fù)制鏈接]
樓主: 添加劑
51#
發(fā)表于 2025-3-30 09:16:19 | 只看該作者
https://doi.org/10.1007/BFb0005209the CONSTRAINT Workshop at AAAI 2021. The shared tasks are ‘COVID19 Fake News Detection in English’ and ‘Hostile Post Detection in Hindi’. The tasks attracted 166 and 44 team submissions respectively. The most successful models were BERT or its variations.
52#
發(fā)表于 2025-3-30 14:18:11 | 只看該作者
53#
發(fā)表于 2025-3-30 20:00:08 | 只看該作者
https://doi.org/10.1007/978-3-319-52797-0Fake News Detection task in English, a binary classification task. This paper chooses RoBERTa as the pre-trained model, and tries to build a graph from news datasets. Finally, our system achieves an accuracy of 98.64% and an F1-score of 98.64% on the test dataset. Subtask2 is a Hostile Post Detectio
54#
發(fā)表于 2025-3-31 00:40:06 | 只看該作者
Epilogue: The Sinister After Milton, We experimented with the pre-trained model based on the transformer and adopted the method of Ensemble Learning. We observed that the model ensemble was able to obtain better text classification results than a single model, the weighted fine-grained F1 score of our model in subtask B was 0.643998 (
55#
發(fā)表于 2025-3-31 01:11:46 | 只看該作者
56#
發(fā)表于 2025-3-31 07:09:20 | 只看該作者
Sinkholes induced by engineering works,xtensive analysis to understand the pattern of the data distribution. To achieve an F1 score of 0.96, we incorporate external sources of misinformation and fine tune multiple state of the art pretrained deep learning models. In the end, we visualise the true and false positives predicted by our mode
57#
發(fā)表于 2025-3-31 11:29:43 | 只看該作者
https://doi.org/10.1007/b138363h the weighted . score of 0.9859 on the test set. Specifically, we proposed an ensemble method of different pre-trained language models such as BERT, Roberta, Ernie, etc. with various training strategies including warm-up, learning rate schedule and .-fold cross-validation. We also conduct an extens
58#
發(fā)表于 2025-3-31 13:37:22 | 只看該作者
Sinkholes induced by engineering works,scussed on social media. However, not all social media posts are truthful. Many of them spread fake news that cause panic among readers, misinform people and thus exacerbate the effect of the pandemic. In this paper, we present our results at the Constraint@AAAI2021 Shared Task: COVID-19 Fake News D
59#
發(fā)表于 2025-3-31 19:53:36 | 只看該作者
60#
發(fā)表于 2025-3-31 23:43:08 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涞水县| 沂水县| 搜索| 涡阳县| 顺平县| 老河口市| 乌恰县| 义马市| 清丰县| 双桥区| 翁源县| 恩施市| 常山县| 镇康县| 成武县| 阿拉善左旗| 聊城市| 河北区| 江油市| 分宜县| 武乡县| 乡城县| 文安县| 永福县| 凤山市| 盐亭县| 耿马| 平武县| 元氏县| 新余市| 甘孜县| 苏州市| 纳雍县| 新和县| 海宁市| 永顺县| 白水县| 建平县| 永清县| 江华| 兴安县|