找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Collineations and Conic Sections; An Introduction to P Christopher Baltus Book 2020 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Flippant
31#
發(fā)表于 2025-3-26 22:51:52 | 只看該作者
32#
發(fā)表于 2025-3-27 02:15:24 | 只看該作者
33#
發(fā)表于 2025-3-27 08:01:17 | 只看該作者
Christopher BaltusGives the necessary geometry to readers of limited background.Provides reader with a general history through the mid-nineteenth century.Features a proof-based treatment
34#
發(fā)表于 2025-3-27 11:52:25 | 只看該作者
35#
發(fā)表于 2025-3-27 14:24:30 | 只看該作者
Incestuous Sibling Relationships: , and , The collineation is . if there is a ., a point . where all lines on . are fixed, meaning the line is mapped to itself, although individual points on the line need not be fixed. We have seen that a collineation is central exactly when it has a line of fixed points, an ..
36#
發(fā)表于 2025-3-27 20:58:55 | 只看該作者
37#
發(fā)表于 2025-3-27 21:59:15 | 只看該作者
Siblings in Childhood and Adolescence, concept appeared in the work of Desargues, although the name was first used by L. Carnot in 1803. That it produces a harmonic set was recognized by La Hire in 1685. Its dual, the ., is a different way of viewing the same figure. (In the period we cover, the figure was always called a complete quadrilateral.)
38#
發(fā)表于 2025-3-28 05:19:52 | 只看該作者
https://doi.org/10.1057/9781137316905celet wrote in his 1822 ., Art. 446: “Although the properties of foci (.) …seem to not be among those we have called ., …they follow nevertheless in a very simple manner from foundational principles ….”
39#
發(fā)表于 2025-3-28 07:55:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:31:21 | 只看該作者
978-3-030-46289-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南平市| 扶风县| 屏山县| 道真| 土默特左旗| 泰来县| 阳新县| 湖北省| 金华市| 翁源县| 通山县| 滨州市| 马山县| 山东省| 巫山县| 确山县| 海林市| 大丰市| 广昌县| 内乡县| 抚顺县| 舟曲县| 鹿邑县| 融水| 平武县| 周口市| 沾化县| 天峻县| 临清市| 宜川县| 内乡县| 大方县| 大连市| 齐齐哈尔市| 鄄城县| 蒙城县| 安仁县| 淮滨县| 六安市| 宣城市| 大宁县|