找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Collected Papers; Volume I 1955-1966 Bertram Kostant,Anthony Joseph,Shrawan Kumar,Michè Book 2009 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Johnson
41#
發(fā)表于 2025-3-28 15:10:52 | 只看該作者
Holonomy and the Lie Algebra of Infinitesimal Motions of A Riemannian Manifold,nishes at a point . ? . then . induces, in a natural way, an endomorphism .. of the tangent space .. at .. In fact if . ? .. and . is any vector field whose value at . is ., then define ... = [., .].. It is not hard to see that [., .]. does not depend on . so long as the value of . at . is ..
42#
發(fā)表于 2025-3-28 20:39:38 | 只看該作者
43#
發(fā)表于 2025-3-28 23:46:37 | 只看該作者
On Holonomy and Homogeneous Spaces,ral than the others. We refer to the connections which K. Nomizu in [4] calls canonical affine connections of the first kind. When . is a compact connected Lie group and . a closed subgroup we called an invariant Riemannian metric on ., natural (in [2]) when it induced such a connection.
44#
發(fā)表于 2025-3-29 04:11:51 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:15 | 只看該作者
Eigenvalues of a Laplacian and Commutative Lie Subalgebras,ued left invariant differential forms may be naturally identified with the exterior algebra ?.. Also, one knows then that ?. is stable under the Laplacian defined with respect to the canonical Riemannian metric on ..
46#
發(fā)表于 2025-3-29 12:45:47 | 只看該作者
47#
發(fā)表于 2025-3-29 16:44:10 | 只看該作者
48#
發(fā)表于 2025-3-29 22:52:20 | 只看該作者
49#
發(fā)表于 2025-3-30 00:13:39 | 只看該作者
50#
發(fā)表于 2025-3-30 06:12:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳西县| 水富县| 大关县| 镇巴县| 平遥县| 贵南县| 洛川县| 文昌市| 乌拉特中旗| 栾城县| 荣成市| 甘孜县| 中卫市| 望都县| 报价| 丰原市| 高淳县| 塔河县| 神池县| 石景山区| 淮阳县| 上林县| 简阳市| 江津市| 高青县| 枞阳县| 台北市| 阜康市| 玉山县| 东丰县| 三穗县| 岑溪市| 临桂县| 达日县| 磴口县| 东光县| 德兴市| 大石桥市| 东阿县| 南昌市| 阜宁县|