找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Sheaves; Birger Iversen Textbook 1986 Springer-Verlag Berlin Heidelberg 1986 Characteristic class.Chern class.Homotopy.cohom

[復(fù)制鏈接]
查看: 24522|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:10:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Cohomology of Sheaves
編輯Birger Iversen
視頻videohttp://file.papertrans.cn/230/229266/229266.mp4
叢書名稱Universitext
圖書封面Titlebook: Cohomology of Sheaves;  Birger Iversen Textbook 1986 Springer-Verlag Berlin Heidelberg 1986 Characteristic class.Chern class.Homotopy.cohom
描述This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn- ing to particular classes of topological spaces. The most satis- factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon- strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis.
出版日期Textbook 1986
關(guān)鍵詞Characteristic class; Chern class; Homotopy; cohomology; homological algebra; homology; homotopy theory
版次1
doihttps://doi.org/10.1007/978-3-642-82783-9
isbn_softcover978-3-540-16389-3
isbn_ebook978-3-642-82783-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1986
The information of publication is updating

書目名稱Cohomology of Sheaves影響因子(影響力)




書目名稱Cohomology of Sheaves影響因子(影響力)學(xué)科排名




書目名稱Cohomology of Sheaves網(wǎng)絡(luò)公開度




書目名稱Cohomology of Sheaves網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cohomology of Sheaves被引頻次




書目名稱Cohomology of Sheaves被引頻次學(xué)科排名




書目名稱Cohomology of Sheaves年度引用




書目名稱Cohomology of Sheaves年度引用學(xué)科排名




書目名稱Cohomology of Sheaves讀者反饋




書目名稱Cohomology of Sheaves讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:36 | 只看該作者
Textbook 1986ult is obtainable without turn- ing to particular classes of topological spaces. The most satis- factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is
板凳
發(fā)表于 2025-3-22 01:58:55 | 只看該作者
地板
發(fā)表于 2025-3-22 08:04:24 | 只看該作者
5#
發(fā)表于 2025-3-22 11:15:17 | 只看該作者
6#
發(fā)表于 2025-3-22 15:24:57 | 只看該作者
978-3-540-16389-3Springer-Verlag Berlin Heidelberg 1986
7#
發(fā)表于 2025-3-22 18:06:24 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:23 | 只看該作者
Severe Community-Acquired Pneumonia,By a . we understand a non-empty set I equipped with a preorder, i.e. a relation satisfying.subject to the condition that for any a∈ I and b ∈ I there exists c∈I with a ≤ c and b ≤ c.
9#
發(fā)表于 2025-3-23 04:43:57 | 只看該作者
10#
發(fā)表于 2025-3-23 08:58:53 | 只看該作者
Intra-Abdominal Hypertension and MODS,In this section we shall prove that sheaf cohomology with constant coefficient is a . . of the space. Recall that continuous maps f,g: X → Y are said to be homotopic if there exists a continuous map F: X × [0,1] → Y with
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中江县| 兴国县| 广宁县| 额济纳旗| 叶城县| 云林县| 德格县| 中山市| 肥乡县| 资源县| 德惠市| 彭泽县| 建始县| 蒙阴县| 临朐县| 泸溪县| 舞钢市| 来安县| 石嘴山市| 留坝县| 聂拉木县| 珠海市| 富裕县| 夏河县| 剑河县| 婺源县| 昌吉市| 策勒县| 涞水县| 柏乡县| 巧家县| 安塞县| 武宁县| 万年县| 龙游县| 萝北县| 新蔡县| 抚宁县| 阳东县| 曲麻莱县| 邵东县|