找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Aspects in Complex Non-K?hler Geometry; Daniele Angella Book 2014 Springer International Publishing Switzerland 2014 32Q99,

[復(fù)制鏈接]
樓主: LH941
11#
發(fā)表于 2025-3-23 10:41:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:45:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:15 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:10 | 只看該作者
Preliminaries on (Almost-)Complex Manifolds, start by setting some definitions and notation concerning (almost-)complex structures, Sect. 1.1, symplectic structures, Sect. 1.2, and generalized complex structures, Sect. 1.3; then we recall the main results in the Hodge theory for K?hler manifolds, Sect. 1.4, and in the Kodaira, Spencer, Nirenb
15#
發(fā)表于 2025-3-24 04:29:44 | 只看該作者
16#
發(fā)表于 2025-3-24 07:18:14 | 只看該作者
17#
發(fā)表于 2025-3-24 13:44:23 | 只看該作者
18#
發(fā)表于 2025-3-24 18:40:10 | 只看該作者
W. D. Willis Jr.,R. E. Coggeshall start by setting some definitions and notation concerning (almost-)complex structures, Sect. 1.1, symplectic structures, Sect. 1.2, and generalized complex structures, Sect. 1.3; then we recall the main results in the Hodge theory for K?hler manifolds, Sect. 1.4, and in the Kodaira, Spencer, Nirenb
19#
發(fā)表于 2025-3-24 22:39:53 | 只看該作者
Sensory Pathways in the Dorsal Columns,e, constitutes a bridge between the de Rham cohomology and the Dolbeault cohomology of a complex manifold.In Sect. 2.1, we recall some definitions and results on the . and . cohomologies, see, e.g., Schweitzer (., ., 2007), and on the . ., referring to Deligne et al. (Invent. Math. 29(3):245–274, 19
20#
發(fā)表于 2025-3-24 23:56:54 | 只看該作者
Sensory Pathways in the Ventral Quadrant,re, (Benson and Gordon, Topology 27(4):513–518, 1988; Lupton and Oprea, J. Pure Appl. Algebra 91(1–3):193–207, 1994), and, more in general, solvmanifolds admitting a K?hler structure are characterized, (Hasegawa, Proc. Am. Math. Soc. 106(1):65–71, 1989); on the other hand, the geometry and cohomolog
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克| 洪泽县| 乌拉特中旗| 丹江口市| 资兴市| 平凉市| 霸州市| 昌吉市| 肇州县| 伊宁市| 丰台区| 四平市| 虹口区| 临漳县| 红桥区| 张家川| 黔江区| 南投县| 察哈| 全南县| 大庆市| 万源市| 敖汉旗| 蓬安县| 晋中市| 忻州市| 陆河县| 古交市| 天等县| 宕昌县| 五莲县| 牙克石市| 老河口市| 长白| 陵川县| 苏州市| 双牌县| 浪卡子县| 包头市| 阿拉善盟| 浮梁县|