找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Aspects in Complex Non-K?hler Geometry; Daniele Angella Book 2014 Springer International Publishing Switzerland 2014 32Q99,

[復(fù)制鏈接]
樓主: LH941
11#
發(fā)表于 2025-3-23 10:41:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:45:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:30:15 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:10 | 只看該作者
Preliminaries on (Almost-)Complex Manifolds, start by setting some definitions and notation concerning (almost-)complex structures, Sect. 1.1, symplectic structures, Sect. 1.2, and generalized complex structures, Sect. 1.3; then we recall the main results in the Hodge theory for K?hler manifolds, Sect. 1.4, and in the Kodaira, Spencer, Nirenb
15#
發(fā)表于 2025-3-24 04:29:44 | 只看該作者
16#
發(fā)表于 2025-3-24 07:18:14 | 只看該作者
17#
發(fā)表于 2025-3-24 13:44:23 | 只看該作者
18#
發(fā)表于 2025-3-24 18:40:10 | 只看該作者
W. D. Willis Jr.,R. E. Coggeshall start by setting some definitions and notation concerning (almost-)complex structures, Sect. 1.1, symplectic structures, Sect. 1.2, and generalized complex structures, Sect. 1.3; then we recall the main results in the Hodge theory for K?hler manifolds, Sect. 1.4, and in the Kodaira, Spencer, Nirenb
19#
發(fā)表于 2025-3-24 22:39:53 | 只看該作者
Sensory Pathways in the Dorsal Columns,e, constitutes a bridge between the de Rham cohomology and the Dolbeault cohomology of a complex manifold.In Sect. 2.1, we recall some definitions and results on the . and . cohomologies, see, e.g., Schweitzer (., ., 2007), and on the . ., referring to Deligne et al. (Invent. Math. 29(3):245–274, 19
20#
發(fā)表于 2025-3-24 23:56:54 | 只看該作者
Sensory Pathways in the Ventral Quadrant,re, (Benson and Gordon, Topology 27(4):513–518, 1988; Lupton and Oprea, J. Pure Appl. Algebra 91(1–3):193–207, 1994), and, more in general, solvmanifolds admitting a K?hler structure are characterized, (Hasegawa, Proc. Am. Math. Soc. 106(1):65–71, 1989); on the other hand, the geometry and cohomolog
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西充县| 静乐县| 郸城县| 仙居县| 奎屯市| 岗巴县| 民县| 响水县| 三河市| 渝中区| 遂溪县| 原阳县| 长岭县| 夏河县| 广宁县| 南投市| 娄底市| 和硕县| 新民市| 铅山县| 北流市| 巴楚县| 太谷县| 中牟县| 偃师市| 平度市| 普兰店市| 宜宾县| 长沙市| 永福县| 井研县| 宝鸡市| 灵山县| 荆门市| 绥芬河市| 东乌珠穆沁旗| 久治县| 大埔县| 奉贤区| 石屏县| 肥西县|