找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohesive Subgraph Computation over Large Sparse Graphs; Algorithms, Data Str Lijun Chang,Lu Qin Book 2018 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
查看: 6568|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:16:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs
副標(biāo)題Algorithms, Data Str
編輯Lijun Chang,Lu Qin
視頻videohttp://file.papertrans.cn/230/229241/229241.mp4
概述Includes data structures that can be of general use for efficient graph processing.Considered the first extended survey on algorithms and techniques for efficient cohesive subgraph computation.Source
叢書(shū)名稱Springer Series in the Data Sciences
圖書(shū)封面Titlebook: Cohesive Subgraph Computation over Large Sparse Graphs; Algorithms, Data Str Lijun Chang,Lu Qin Book 2018 Springer Nature Switzerland AG 20
描述This book is considered the first extended survey on algorithms and techniques for efficient cohesive subgraph computation. With rapid development of information technology, huge volumes of graph data are accumulated. An availability of rich graph data not only brings great opportunities for realizing big values of data to serve key applications, but also brings great challenges in computation. Using a consistent terminology, the book gives an excellent introduction to the models and algorithms for the problem of cohesive subgraph computation. The materials of this book are well organized from introductory content to more advanced topics while also providing well-designed source codes for most algorithms described in the book..?.This is a timely book for researchers who are interested in this topic and efficient data structure design for large sparse graph processing. It is also a guideline book for new researchers to get to know the area of cohesive subgraph computation..
出版日期Book 2018
關(guān)鍵詞Cohesive Subgraph Computation; K-Core; Densest Subgraph; K-Edge Connected Component; Maximum Clique; data
版次1
doihttps://doi.org/10.1007/978-3-030-03599-0
isbn_ebook978-3-030-03599-0Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs影響因子(影響力)




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs影響因子(影響力)學(xué)科排名




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs被引頻次




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs被引頻次學(xué)科排名




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs年度引用




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs年度引用學(xué)科排名




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs讀者反饋




書(shū)目名稱Cohesive Subgraph Computation over Large Sparse Graphs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:28:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:58:50 | 只看該作者
2365-5674 chniques for efficient cohesive subgraph computation.Source This book is considered the first extended survey on algorithms and techniques for efficient cohesive subgraph computation. With rapid development of information technology, huge volumes of graph data are accumulated. An availability of ric
地板
發(fā)表于 2025-3-22 05:44:24 | 只看該作者
Book 2018information technology, huge volumes of graph data are accumulated. An availability of rich graph data not only brings great opportunities for realizing big values of data to serve key applications, but also brings great challenges in computation. Using a consistent terminology, the book gives an ex
5#
發(fā)表于 2025-3-22 11:58:59 | 只看該作者
6#
發(fā)表于 2025-3-22 13:09:07 | 只看該作者
7#
發(fā)表于 2025-3-22 20:13:46 | 只看該作者
8#
發(fā)表于 2025-3-23 00:02:18 | 只看該作者
Introduction, are accumulated with data entities involving complex relationships. These data are usually modelled as . in view of the simple yet strong expressive power of graph model; that is, entities are represented by vertices and relationships are represented by edges.
9#
發(fā)表于 2025-3-23 03:11:32 | 只看該作者
Average Degree-Based Densest Subgraph Computation,terature. In Section?., we give preliminaries of densest subgraphs. Approximation algorithms and exact algorithms for computing the densest subgraph of a large input graph will be discussed in Section?. and in Section?., respectively.
10#
發(fā)表于 2025-3-23 07:17:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高州市| 耿马| 正安县| 临漳县| 麻江县| 江油市| 蓬莱市| 沙洋县| 博兴县| 仁化县| 横峰县| 视频| 宜良县| 丽江市| 绿春县| 饶阳县| 新昌县| 乌拉特后旗| 河西区| 凤山市| 高台县| 福建省| 弥勒县| 仁寿县| 奉贤区| 南开区| 防城港市| 东光县| 麻江县| 安庆市| 夏津县| 临湘市| 成都市| 民权县| 新沂市| 小金县| 明星| 靖州| 思南县| 乐平市| 古丈县|