找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coherent States, Wavelets, and Their Generalizations; Syed Twareque Ali,Jean-Pierre Antoine,Jean-Pierre Book 2014Latest edition Springer

[復(fù)制鏈接]
樓主: Covenant
51#
發(fā)表于 2025-3-30 08:56:44 | 只看該作者
Square Integrable and Holomorphic Kernels,n-angle variables, which are then used to extend the theory to a non-holomorphic set-up, namely, the so-called Gazeau–Klauder CS. The latter in turn lead to probabilistic considerations, that will be the focus of Chap. 11.
52#
發(fā)表于 2025-3-30 13:07:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:01:29 | 只看該作者
Coherent States from Square Integrable Representations,. Several concrete examples are presented. Finally we generalize the theory to representations that are only square integrable on a homogeneous space. This allows one to treat CS of the Gilmore-Perelomov type and, in particular, CS of the Galilei group.
54#
發(fā)表于 2025-3-30 23:03:35 | 只看該作者
55#
發(fā)表于 2025-3-31 01:08:53 | 只看該作者
Wavelets on Manifolds,g to . ordinary dilations on a tangent plane by an inverse stereographic projection. Next we describe briefly a number of techniques for obtaining discrete wavelets on .. Then we extend the analysis to wavelets on other manifolds, such as conic sections, a torus, general surfaces of revolution or graphs.
56#
發(fā)表于 2025-3-31 05:13:09 | 只看該作者
The Discretization Problem: Frames, Sampling, and All That,ames associated with affine semidirect product groups, such as the affine Weyl–Heisenberg group or the affine Poincaré group. Finally we turn to groups without dilations, in particular, the Poincaré groups in 1+1 and 1+3 dimensions.
57#
發(fā)表于 2025-3-31 11:54:46 | 只看該作者
58#
發(fā)表于 2025-3-31 13:55:48 | 只看該作者
Book 2014Latest editionherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory
59#
發(fā)表于 2025-3-31 19:33:29 | 只看該作者
Discrete Wavelet Transforms,lets, by which we mean wavelets based on different numbers, replacing, for instance, the dilation factor 2 by the golden mean . (we speak then of .-wavelets) or arbitrary real numbers, which lead to Pisot wavelets.
60#
發(fā)表于 2025-3-31 22:26:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南平市| 蓝田县| 舞钢市| 金乡县| 阜阳市| 广丰县| 团风县| 隆回县| 湛江市| 湘阴县| 宜丰县| 江源县| 晋城| 乐都县| 建湖县| 城步| 芒康县| 衡阳县| 沙洋县| 胶州市| 阿瓦提县| 会理县| 昌图县| 高台县| 汝州市| 台北县| 全州县| 神木县| 读书| 通江县| 山西省| 泗阳县| 沁阳市| 许昌市| 子长县| 水富县| 沾益县| 彰化市| 景洪市| 思茅市| 辰溪县|