找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Coherent States, Wavelets, and Their Generalizations; Syed Twareque Ali,Jean-Pierre Antoine,Jean-Pierre Book 2014Latest edition Springer

[復(fù)制鏈接]
樓主: Covenant
11#
發(fā)表于 2025-3-23 12:52:40 | 只看該作者
Sensorische Anfallsdetektion bei Epilepsieinuous wavelet transform (CWT) in 1-D. Starting from the beginning, we rewrite the general CS formalism for the case at hand, that is, the connected affine group of the line. We discuss the basic properties, the interpretation of the CWT as a phase space representation and some examples, with emphas
12#
發(fā)表于 2025-3-23 13:56:33 | 只看該作者
Sensorische Beurteilung von Lebensmitteln. Next we extend the analysis to a group-theoretical approach to discrete wavelet transforms. Starting from wavelets on the finite field ., we introduce pseudo-dilations and a group structure. Then we generalize this approach to wavelets on a discrete abelian group. Finally we discuss algebraic wave
13#
發(fā)表于 2025-3-23 19:19:10 | 只看該作者
Friedrich Kiermeier,Ulrich Haevecker analysis, with some emphasis on the distinction between isotropic and directional wavelets. Next we particularize to 2-D, the most important case for applications in image analysis, discussing its distinctive properties and some applications. Finally we describe in some detail a number of generaliz
14#
發(fā)表于 2025-3-24 01:42:27 | 只看該作者
https://doi.org/10.1007/978-3-642-18867-1f wavelets on the two-sphere .. We start with the continuous approach, based on the use of stereographic dilations, i.e., dilations obtained by lifting to . ordinary dilations on a tangent plane by an inverse stereographic projection. Next we describe briefly a number of techniques for obtaining dis
15#
發(fā)表于 2025-3-24 03:36:10 | 只看該作者
Roseann C. Schaaf,Marie E. Anzaloneto frames under that operation? We start with the Weyl–Heisenberg group underlying canonical CS and discuss Gabor frames. Next we describe discrete frames associated with affine semidirect product groups, such as the affine Weyl–Heisenberg group or the affine Poincaré group. Finally we turn to group
16#
發(fā)表于 2025-3-24 07:31:52 | 只看該作者
17#
發(fā)表于 2025-3-24 11:01:29 | 只看該作者
18#
發(fā)表于 2025-3-24 17:35:02 | 只看該作者
978-1-4939-5025-6Springer Science+Business Media New York 2014
19#
發(fā)表于 2025-3-24 22:33:01 | 只看該作者
Sensorische Kurzaktivierung im PflegealltagWe start with a description of the canonical coherent states (CS) and some historical remarks on the evolution of the concept and its applications. Then we present in detail the organization of the book.
20#
發(fā)表于 2025-3-25 00:30:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合肥市| 罗甸县| 太保市| 日照市| 房产| 长武县| 吴旗县| 黎平县| 蒙山县| 凤阳县| 高平市| 昌江| 湖南省| 渑池县| 望都县| 花垣县| 巴林左旗| 青铜峡市| 水城县| 龙泉市| 松潘县| 和林格尔县| 高邮市| 安陆市| 宜兰县| 星子县| 昌宁县| 克山县| 靖安县| 龙口市| 大关县| 六盘水市| 达孜县| 布拖县| 马龙县| 龙里县| 进贤县| 朝阳县| 岢岚县| 遂昌县| 渭南市|