找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck; Jean-Michel Bismut,Shu Shen,Zhaoting Wei Book 2023 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Opiate
11#
發(fā)表于 2025-3-23 12:53:38 | 只看該作者
Tommaso Polonelli,Michele MagnoWe describe the main results contained in the book. In particular, if . is a compact complex manifold, we outline the construction of the Chern character of coherent sheaves with values in Bott-Chern cohomology, we state the corresponding Riemann-Roch-Grothendieck theorem, and we give a sketch of the proof.
12#
發(fā)表于 2025-3-23 16:39:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:41:54 | 只看該作者
Francisco Martins,Luís Lopes,Hervé PaulinoWe recall elementary facts of linear algebra and differential geometry, in particular on connections on a real tangent bundle with nonzero torsion.
15#
發(fā)表于 2025-3-24 04:25:37 | 只看該作者
Dulce Domingos,Francisco Martins,Lara CaiolaWe recall the definition of the antiholomorphic superconnections of Block, and we study their functorial properties. We prove that the associated sheaf cohomology is coherent, and we show that the corresponding determinant is a holomorphic line bundle.
16#
發(fā)表于 2025-3-24 08:09:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:20 | 只看該作者
18#
發(fā)表于 2025-3-24 16:32:41 | 只看該作者
19#
發(fā)表于 2025-3-24 19:51:39 | 只看該作者
https://doi.org/10.1007/978-3-642-23583-2We establish the Riemann-Roch-Grothendieck theorem in the case of embeddings.
20#
發(fā)表于 2025-3-25 01:46:26 | 只看該作者
Hervé Paulino,Jo?o Ruivo SantosWe state the Riemann-Roch-Grothendieck theorem in the case of a projection .. Given metric data, we construct an infinite-dimensional antiholomorphic superconnection with fiberwise elliptic curvature, and we obtain corresponding Chern character forms on ., whose Bott-Chern class does not depend on the metrics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 蛟河市| 紫云| 聊城市| 五家渠市| 永州市| 高邮市| 贞丰县| 古交市| 锡林郭勒盟| 蓬溪县| 迭部县| 通化市| 怀仁县| 阿城市| 清水河县| 兴业县| 横峰县| 平江县| 林州市| 庆云县| 昌平区| 徐水县| 水城县| 都江堰市| 巴楚县| 永寿县| 临沭县| 松桃| 连州市| 宁阳县| 吉隆县| 吉安县| 隆子县| 长宁区| 光山县| 秦安县| 蓬莱市| 青川县| 钟山县| 富民县|