找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cognitive Systems and Signal Processing; 5th International Co Fuchun Sun,Huaping Liu,Bin Fang Conference proceedings 2021 Springer Nature S

[復(fù)制鏈接]
查看: 48038|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:16:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cognitive Systems and Signal Processing
副標題5th International Co
編輯Fuchun Sun,Huaping Liu,Bin Fang
視頻videohttp://file.papertrans.cn/230/229135/229135.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Cognitive Systems and Signal Processing; 5th International Co Fuchun Sun,Huaping Liu,Bin Fang Conference proceedings 2021 Springer Nature S
描述.This book constitutes the refereed post-conference proceedings of the 5th International Conference on Cognitive Systems and Signal Processing, ICCSIP 2020, held in Zhuhai, China, in December 2020...The 59 revised papers presented were carefully reviewed and selected from 120 submissions. The papers are organized in topical sections on algorithm; application; manipulation; bioinformatics; vision; and autonomous vehicles..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; cognitive systems; computer networks; computer systems; computer vision; correla
版次1
doihttps://doi.org/10.1007/978-981-16-2336-3
isbn_softcover978-981-16-2335-6
isbn_ebook978-981-16-2336-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Cognitive Systems and Signal Processing影響因子(影響力)




書目名稱Cognitive Systems and Signal Processing影響因子(影響力)學(xué)科排名




書目名稱Cognitive Systems and Signal Processing網(wǎng)絡(luò)公開度




書目名稱Cognitive Systems and Signal Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cognitive Systems and Signal Processing被引頻次




書目名稱Cognitive Systems and Signal Processing被引頻次學(xué)科排名




書目名稱Cognitive Systems and Signal Processing年度引用




書目名稱Cognitive Systems and Signal Processing年度引用學(xué)科排名




書目名稱Cognitive Systems and Signal Processing讀者反饋




書目名稱Cognitive Systems and Signal Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:22:44 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:44 | 只看該作者
5#
發(fā)表于 2025-3-22 11:28:37 | 只看該作者
The Realtime Indoor Localization Unmanned Aerial Vehicleon of direct method and feature-based method. The visual odometer uses the photometric error to directly match and track the camera’s pose to improve the real-time performance. Then the ORB (Oriented FAST and Rotated Brief) features are extended from key frames, and local and global optimization can
6#
發(fā)表于 2025-3-22 12:59:03 | 只看該作者
L1-Norm and Trace Lasso Based Locality Correlation Projectionhe robustness to outliers too much and overlook the correlation information among data so that they usually encounter the instability problem. To overcome this problem, in this paper, we propose a method called L1-norm and trace Lasso based locality correlation projection (L1/TL-LRP), in which the r
7#
發(fā)表于 2025-3-22 17:46:54 | 只看該作者
Episodic Training for Domain Generalization Using Latent Domainsin. In this paper, take advantage of aggregating data method from all source and latent domains as a novel, we propose episodic training for domain generalization, aim to improve the performance during the trained model used for prediction in the unseen domain. To address this goal, we first designe
8#
發(fā)表于 2025-3-22 23:01:04 | 只看該作者
9#
發(fā)表于 2025-3-23 03:37:55 | 只看該作者
METAHACI: Meta-learning for Human Activity Classification from IMU Datameasurement unit (IMU) sensor is one of the popular devices collecting time-series data. Together with deep neural network implementation, this results in facilitating advancement in time series data analysis. However, the classical problem for the deep neural network is that it requires a vast amou
10#
發(fā)表于 2025-3-23 05:43:17 | 只看該作者
Fusing Knowledge and Experience with?Graph Convolutional Network for?Cross-task Learning in Visual Cents prior methods to handle this task. Therefore, we propose a model called knowledge-experience fusion graph (KEFG) network for novel inference. It exploits information from both knowledge and experience. With the employment of graph convolutional network (GCN), KEFG generates the predictive class
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会东县| 正宁县| 凉山| 宁武县| 禄劝| 临清市| 尼玛县| 岳西县| 上栗县| 扶风县| 阿拉尔市| 沽源县| 永兴县| 汝南县| 邹城市| 峨眉山市| 靖远县| 桃园市| 长顺县| 江安县| 青州市| 奉新县| 浦城县| 明水县| 门头沟区| 松潘县| 临漳县| 兴安县| 防城港市| 白城市| 崇左市| 大石桥市| 毕节市| 江都市| 米林县| 长岭县| 汤原县| 双峰县| 文山县| 延吉市| 射阳县|