找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cognitive Computing for Big Data Systems Over IoT; Frameworks, Tools an Arun Kumar Sangaiah,Arunkumar Thangavelu,Venkatesa Book 2018 The Ed

[復(fù)制鏈接]
查看: 14657|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:10:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT
副標(biāo)題Frameworks, Tools an
編輯Arun Kumar Sangaiah,Arunkumar Thangavelu,Venkatesa
視頻videohttp://file.papertrans.cn/230/229008/229008.mp4
概述Explores domain knowledge and data reasoning technologies and cognitive methods using the Internet of Things (IoTs).Focuses on the design of the best cognitive embedded data technologies to process an
叢書(shū)名稱Lecture Notes on Data Engineering and Communications Technologies
圖書(shū)封面Titlebook: Cognitive Computing for Big Data Systems Over IoT; Frameworks, Tools an Arun Kumar Sangaiah,Arunkumar Thangavelu,Venkatesa Book 2018 The Ed
描述.This book brings a high level of fluidity to analytics and addresses recent trends, innovative ideas, challenges and cognitive computing solutions in big data and the Internet of Things (IoT). It explores domain knowledge, data science reasoning and cognitive methods in the context of the IoT, extending current data science approaches by incorporating insights from experts as well as a notion of artificial intelligence, and performing inferences on the knowledge.The book provides a comprehensive overview of the constituent paradigms underlying cognitive computing methods, which illustrate the increased focus on big data in IoT problems as they evolve. It includes novel, in-depth fundamental research contributions from a methodological/application in data science accomplishing sustainable solution for the future perspective...Mainly focusing on the design of the best cognitive embedded data science technologies to process and analyze the large amount of data collectedthrough the IoT, and aid better decision making, the book discusses adapting decision-making approaches under cognitive computing paradigms to demonstrate how the proposed procedures as well as big data and IoT problem
出版日期Book 2018
關(guān)鍵詞Cognitive Computing; Big Data Analysis; Internet of Things; Data Analytics; Data Technologies; Cognitive
版次1
doihttps://doi.org/10.1007/978-3-319-70688-7
isbn_softcover978-3-319-70687-0
isbn_ebook978-3-319-70688-7Series ISSN 2367-4512 Series E-ISSN 2367-4520
issn_series 2367-4512
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT影響因子(影響力)




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT影響因子(影響力)學(xué)科排名




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT被引頻次




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT被引頻次學(xué)科排名




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT年度引用




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT年度引用學(xué)科排名




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT讀者反饋




書(shū)目名稱Cognitive Computing for Big Data Systems Over IoT讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:06:44 | 只看該作者
https://doi.org/10.1007/978-3-031-41163-2omposed of thousands distributed entities and a number of multimedia smart devices. In recent years, due to the improvement of popularity and capability of smart mobile devices, Mobile Cloud Computing (MCC) gains a considerable attention in Internet of Things (IoT) environment. As there are variety
地板
發(fā)表于 2025-3-22 06:45:58 | 只看該作者
B. A. Cerda,M. J. Nold,C. Wesdemiotisntribute to very challenging area for data science method applying. Traditional approach of predictive modelling became insufficient, because relaying on few variables as a base of the fraud model are very fragile concept. Reason for that is fact that we are talking about portfolio with low cases of
5#
發(fā)表于 2025-3-22 11:17:20 | 只看該作者
6#
發(fā)表于 2025-3-22 13:21:01 | 只看該作者
7#
發(fā)表于 2025-3-22 18:53:44 | 只看該作者
8#
發(fā)表于 2025-3-22 22:59:19 | 只看該作者
9#
發(fā)表于 2025-3-23 01:37:41 | 只看該作者
Shuxiang Guo,Nan Xiao,Baofeng GaooT procedures. Its purpose is to expand the range of entities to be considered when describing a sensor-monitored environment by allowing, in particular, to seamlessly model in a unified way (i.e., within the same representation framework) physical entities like objects, humans, robots, etc. and hig
10#
發(fā)表于 2025-3-23 06:27:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海晏县| 库尔勒市| 霸州市| 托克逊县| 云南省| 象州县| 泾川县| 铜鼓县| 上犹县| 定南县| 红桥区| 维西| 新源县| 和田市| 灵台县| 无为县| 从江县| 镇康县| 开封市| 多伦县| 柳林县| 称多县| 万州区| 东港市| 格尔木市| 闻喜县| 旬邑县| 辽源市| 家居| 武山县| 亳州市| 兴义市| 彰武县| 盘锦市| 依安县| 高唐县| 修武县| 德江县| 宝兴县| 龙门县| 舞钢市|