找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cognitive Computation and Systems; First International Fuchun Sun,Jianmin Li,Zhongyi Chu Conference proceedings 2023 The Editor(s) (if app

[復(fù)制鏈接]
查看: 32569|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:07:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cognitive Computation and Systems
副標題First International
編輯Fuchun Sun,Jianmin Li,Zhongyi Chu
視頻videohttp://file.papertrans.cn/229/228998/228998.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Cognitive Computation and Systems; First International  Fuchun Sun,Jianmin Li,Zhongyi Chu Conference proceedings 2023 The Editor(s) (if app
描述This volume constitutes selected papers presented during the?First International Conference on Cognitive Computation and Systems, ICCCS 2022, held in Beijing, China, in October 2022..The 31 papers were thoroughly reviewed and selected from the 75 submissions. The papers are organized in topical sections on ?computer vision; decision making and cognitive computation; robot and autonomous vehicle..
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; machine learning; robotics; computer vision; robotic autonomy; cognitive science
版次1
doihttps://doi.org/10.1007/978-981-99-2789-0
isbn_softcover978-981-99-2788-3
isbn_ebook978-981-99-2789-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Cognitive Computation and Systems影響因子(影響力)




書目名稱Cognitive Computation and Systems影響因子(影響力)學(xué)科排名




書目名稱Cognitive Computation and Systems網(wǎng)絡(luò)公開度




書目名稱Cognitive Computation and Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cognitive Computation and Systems被引頻次




書目名稱Cognitive Computation and Systems被引頻次學(xué)科排名




書目名稱Cognitive Computation and Systems年度引用




書目名稱Cognitive Computation and Systems年度引用學(xué)科排名




書目名稱Cognitive Computation and Systems讀者反饋




書目名稱Cognitive Computation and Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:19:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:15:03 | 只看該作者
A Novel Autoencoder for?Task-Driven Object Segmentationds can only recognize and segment one class of objects, but cannot segment the other classes of objects in the same image. To address this issue, this paper proposes a novel autoencoder to perform task-driven object segmentation, in which a control signal is added to the decoder to determine which c
地板
發(fā)表于 2025-3-22 06:35:02 | 只看該作者
Feedback Attention-Augmented Bilateral Network for?Amodal Instance Segmentationarts of each object instance. Many modern computer vision methods demonstrate excellent performance by using the mechanism of looking and thinking twice and the attention mechanism. In this paper, we propose a feedback attention-augmented bilateral network. Specifically, after the convolutional netw
5#
發(fā)表于 2025-3-22 11:23:17 | 只看該作者
6#
發(fā)表于 2025-3-22 16:11:25 | 只看該作者
PointNetX: Part Segmentation Based on PointNet Promotionet, a pioneer in point cloud processing, uses max pooling to address the disorder of point clouds. However, PointNet‘s method of mapping points to high-dimensional space, and then obtaining global features through maximum pooling still leads to a large loss of feature information. To this end, we su
7#
發(fā)表于 2025-3-22 20:54:28 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:49 | 只看該作者
9#
發(fā)表于 2025-3-23 04:23:04 | 只看該作者
Shape and?Pose Reconstruction of?Robotic In-Hand Objects from?a?Single Depth Cameraritically important for robotic in-hand manipulation. However, in-hand objects have self-occlusion, making it challenging to perceive their complete shape and posture. To address this challenge, this work proposed a point-clouds processing framework to achieve shape completion and pose estimation of
10#
發(fā)表于 2025-3-23 09:31:39 | 只看該作者
“Gongzhu” Strategy Based on Convolutional Neural Networkd-showing and card-playing. The behavior of card-showing determines the strategy of card-playing, and the whole game process is highly reversible. This paper proposes a deep learning-based game algorithm of “Gongzhu”. According to the functional characteristics, the network structure of card-showing
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内丘县| 华容县| 兴义市| 邛崃市| 广东省| 赤水市| 滦南县| 九江县| 吕梁市| 桃源县| 五莲县| 泰安市| 宁津县| 沂南县| 云和县| 宁夏| 镇赉县| 安西县| 永昌县| 荣昌县| 双城市| 化隆| 南昌县| 武川县| 武穴市| 邢台市| 蒙自县| 即墨市| 和静县| 石狮市| 中西区| 云安县| 房产| 淮北市| 电白县| 乃东县| 扎鲁特旗| 龙南县| 芦溪县| 江山市| 溧水县|