找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding, Cryptography and Combinatorics; Keqin Feng,Harald Niederreiter,Chaoping Xing Conference proceedings 2004 Springer Basel AG 2004 DE

[復制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 10:00:45 | 只看該作者
HFE and BDDs: A Practical Attempt at Cryptanalysis chosen parameters during the construction produce a system of quadratic multivariate polynomials over . as the public key. An enclosed trapdoor is used to decrypt messages. We propose a ciphertext-only attack which mainly consists in satisfying a boolean formula. Our algorithm is based on BDDs (Bin
12#
發(fā)表于 2025-3-23 15:18:58 | 只看該作者
Digital Nets and Coding Theoryviewed as the problem of constructing good linear codes in metric spaces that are more general than Hamming spaces. In this paper we report on the fascinating connections between digital nets and linear codes. In particular, we describe the duality theory for digital nets, the asymptotics of digital
13#
發(fā)表于 2025-3-23 21:23:31 | 只看該作者
14#
發(fā)表于 2025-3-23 23:09:33 | 只看該作者
15#
發(fā)表于 2025-3-24 02:50:52 | 只看該作者
16#
發(fā)表于 2025-3-24 09:33:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:34:15 | 只看該作者
https://doi.org/10.1007/978-3-642-68049-6In this paper, based on residue rings of polynomials, we present a general construction for nonbinary codes capable of correcting . or fewer symmetric errors and detecting all unidirectional errors with the magnitude error criterion. Some new lower bounds for such codes are obtained from this general construction.
18#
發(fā)表于 2025-3-24 18:55:41 | 只看該作者
H. G. Willert,G. Buchhorn,L. ZichnerWe study the number of solutions to certain equations over finite fields and show how this gives a family of four-valued cross-correlation functions of binary m-sequences. This new family includes both of the four-valued cross-correlations found by Niho.
19#
發(fā)表于 2025-3-24 19:13:30 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
余江县| 红桥区| 万山特区| 沙坪坝区| 毕节市| 庆元县| 香港| 嵊州市| 永清县| 壤塘县| 临汾市| 嘉义县| 莱西市| 曲靖市| 两当县| 黄梅县| 鲜城| 泗水县| 蒲城县| 梨树县| 福泉市| 磴口县| 微山县| 贺州市| 望谟县| 瓮安县| 咸阳市| 海淀区| 张家口市| 兴国县| 阳江市| 兴安县| 安宁市| 儋州市| 子洲县| 黄冈市| 珠海市| 定安县| 寿宁县| 嘉善县| 罗城|