找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theory, Cryptography and Related Areas; Proceedings of an In Johannes Buchmann,Tom H?holdt,Horacio Tapia-Recill Conference proceedin

[復(fù)制鏈接]
樓主: VERSE
11#
發(fā)表于 2025-3-23 10:28:58 | 只看該作者
Modifications of the Rao-Nam Cryptosystem,e discuss several modifications of the improved Rao-Nam system. The goal of these modifications is to reduce the amount of secret key that needs to be exchanged, while maintaining the security of the system..
12#
發(fā)表于 2025-3-23 16:02:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:20:28 | 只看該作者
14#
發(fā)表于 2025-3-23 23:50:20 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:53 | 只看該作者
Future Strategies and Conclusions,lts of Hua in the one variable case, and Igusa in the case of several variables. In general, Gauss sums over finite rings possess asymptotic expansions whose leading term can be expressed in terms of quadratic Gauss sums. The principal tool turns out to be an arithmetic analogue of Morse’s Lemma.
16#
發(fā)表于 2025-3-24 10:27:55 | 只看該作者
17#
發(fā)表于 2025-3-24 14:32:43 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:26 | 只看該作者
Mary L. Duryea,Gregory N. Brown (see [3] and [6]) for exponential sums over the binary field. We also give an elementary new proof of Moreno-Moreno’s partial improvement to the Ax-Katz’s theorem (see [5]) for finite fields of characteristic.
19#
發(fā)表于 2025-3-24 19:45:06 | 只看該作者
20#
發(fā)表于 2025-3-24 23:21:02 | 只看該作者
Exponential Sums in Several Variables Over Finite Fields, (see [3] and [6]) for exponential sums over the binary field. We also give an elementary new proof of Moreno-Moreno’s partial improvement to the Ax-Katz’s theorem (see [5]) for finite fields of characteristic.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤冈县| 奎屯市| 抚宁县| 东兰县| 涟水县| 安义县| 宣恩县| 安徽省| 宁安市| 交城县| 洛川县| 远安县| 清水河县| 留坝县| 云阳县| 都昌县| 象州县| 德格县| 岳西县| 黔东| 淅川县| 潼南县| 唐海县| 永仁县| 上蔡县| 阿尔山市| 桓仁| 杭锦旗| 壤塘县| 北辰区| 隆回县| 张家川| 武城县| 奉节县| 龙州县| 湖北省| 太白县| 嘉义市| 徐汇区| 三亚市| 思茅市|