找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theorems of Information Theory; Jacob Wolfowitz Book 1978Latest edition Springer-Verlag Berlin Heidelberg 1978 Code.Communication T

[復(fù)制鏈接]
樓主: malcontented
11#
發(fā)表于 2025-3-23 11:17:19 | 只看該作者
The Semi-Continuous Memoryless Channel,” is of engineering origin.) Without any essential loss of generality we take the space of the output alphabet to be the real line. This is done only to avoid ponderousness, and the extension to the case where the space of the output alphabet is any space on which is defined a .-algebra of sets is t
12#
發(fā)表于 2025-3-23 16:25:36 | 只看該作者
13#
發(fā)表于 2025-3-23 19:44:06 | 只看該作者
Mathematical Miscellanea,hich are basic in published treatments of the subject, but of which no use was made in this monograph. The discussion of Section 5.6 describes the use to which these results are put. A comparison with the methods of Chapter 5 may be instructive.
14#
發(fā)表于 2025-3-24 01:11:45 | 只看該作者
Fundamentals of Rate Distortion Theory,(., . . . , .), and . be the space of all .-sequences with elements in the source alphabet. Let . = {1, . . . , .} be the “reproduction’’ alphabet, and C*. the space of all .-sequences with elements in this alphabet. Let . be a given “distortion” function, i.e., .) is the “distortion” between . = 1,
15#
發(fā)表于 2025-3-24 04:43:06 | 只看該作者
16#
發(fā)表于 2025-3-24 09:36:15 | 只看該作者
Source Coding and Rate Distortion, As usual, C*. will denote the space of such sequences. A distortion function . between elements of . = {1,..., .} and . = {1,..., .} is given, and the distortion between .-sequences defined in the usual manner, i.e., ..
17#
發(fā)表于 2025-3-24 12:57:52 | 只看該作者
18#
發(fā)表于 2025-3-24 18:53:23 | 只看該作者
https://doi.org/10.1007/978-1-4020-5016-9Let . = 1, . . . , ., be non-negative numbers such that . is a probability .-vector. The function . (· | ·) will now play the role of a “channel probability function” (c.p.f.).
19#
發(fā)表于 2025-3-24 22:19:45 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太康县| 苏尼特左旗| 古田县| 农安县| 高雄县| 海林市| 广平县| 独山县| 桓仁| 彭山县| 台州市| 大渡口区| 泰和县| 陇川县| 永泰县| 灵武市| 苗栗市| 克山县| 华容县| 嘉黎县| 卢氏县| 措美县| 汝南县| 渝北区| 弥渡县| 文安县| 马鞍山市| 陆河县| 弥渡县| 江安县| 申扎县| 昭苏县| 武乡县| 宁城县| 都昌县| 商城县| 兴山县| 郁南县| 兰溪市| 广宁县| 绥宁县|