找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theorems of Information Theory; Jacob Wolfowitz Book 1978Latest edition Springer-Verlag Berlin Heidelberg 1978 Code.Communication T

[復(fù)制鏈接]
樓主: malcontented
11#
發(fā)表于 2025-3-23 11:17:19 | 只看該作者
The Semi-Continuous Memoryless Channel,” is of engineering origin.) Without any essential loss of generality we take the space of the output alphabet to be the real line. This is done only to avoid ponderousness, and the extension to the case where the space of the output alphabet is any space on which is defined a .-algebra of sets is t
12#
發(fā)表于 2025-3-23 16:25:36 | 只看該作者
13#
發(fā)表于 2025-3-23 19:44:06 | 只看該作者
Mathematical Miscellanea,hich are basic in published treatments of the subject, but of which no use was made in this monograph. The discussion of Section 5.6 describes the use to which these results are put. A comparison with the methods of Chapter 5 may be instructive.
14#
發(fā)表于 2025-3-24 01:11:45 | 只看該作者
Fundamentals of Rate Distortion Theory,(., . . . , .), and . be the space of all .-sequences with elements in the source alphabet. Let . = {1, . . . , .} be the “reproduction’’ alphabet, and C*. the space of all .-sequences with elements in this alphabet. Let . be a given “distortion” function, i.e., .) is the “distortion” between . = 1,
15#
發(fā)表于 2025-3-24 04:43:06 | 只看該作者
16#
發(fā)表于 2025-3-24 09:36:15 | 只看該作者
Source Coding and Rate Distortion, As usual, C*. will denote the space of such sequences. A distortion function . between elements of . = {1,..., .} and . = {1,..., .} is given, and the distortion between .-sequences defined in the usual manner, i.e., ..
17#
發(fā)表于 2025-3-24 12:57:52 | 只看該作者
18#
發(fā)表于 2025-3-24 18:53:23 | 只看該作者
https://doi.org/10.1007/978-1-4020-5016-9Let . = 1, . . . , ., be non-negative numbers such that . is a probability .-vector. The function . (· | ·) will now play the role of a “channel probability function” (c.p.f.).
19#
發(fā)表于 2025-3-24 22:19:45 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涟源市| 堆龙德庆县| 砀山县| 漾濞| 开阳县| 布拖县| 团风县| 萝北县| 神农架林区| 灌云县| 清流县| 乡城县| 和龙市| 左贡县| 航空| 平昌县| 嘉义市| 盖州市| 洪湖市| 雷州市| 泸溪县| 含山县| 涞源县| 奉贤区| 巴彦淖尔市| 山东省| 望都县| 江津市| 三亚市| 社旗县| 南通市| 闽侯县| 塘沽区| 温泉县| 铅山县| 贵定县| 如皋市| 上犹县| 棋牌| 都昌县| 蓬安县|