找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Codes on Algebraic Curves; Serguei A. Stepanov Book 1999 Kluwer Academic/Plenum Publishers 1999 Prime.Prime number.algebra.algebraic curve

[復制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-26 23:38:19 | 只看該作者
Algebraic Curvess, linear systems, Jacobians, differential forms and their residues, the Riemann—Roch theorem, Hurwitz and Plücker genus formulas, special divisors and Weierstrass points. We do not consider here the arithmetical properties of curves and for that reason the ground field.is assumed to be algebraically closed.
32#
發(fā)表于 2025-3-27 02:30:08 | 只看該作者
33#
發(fā)表于 2025-3-27 08:36:33 | 只看該作者
34#
發(fā)表于 2025-3-27 10:14:17 | 只看該作者
Decoding Geometric Goppa Codesce of decoding algorithms and ending with ones on the construction of efficient algorithms which can easily be used in practice. For a detailed treatment of the complexity of algorithms we refer the reader to Aho, Hoperoft and Ulman [2].
35#
發(fā)表于 2025-3-27 14:51:15 | 只看該作者
36#
發(fā)表于 2025-3-27 18:20:29 | 只看該作者
37#
發(fā)表于 2025-3-28 00:59:22 | 只看該作者
38#
發(fā)表于 2025-3-28 02:49:37 | 只看該作者
Supporting Data Privacy in P2P Systemss, linear systems, Jacobians, differential forms and their residues, the Riemann—Roch theorem, Hurwitz and Plücker genus formulas, special divisors and Weierstrass points. We do not consider here the arithmetical properties of curves and for that reason the ground field.is assumed to be algebraically closed.
39#
發(fā)表于 2025-3-28 08:53:32 | 只看該作者
Privacy in Online Social Networkss of algebraic varieties, we must develop the corresponding theory for the case of non-closed fields such as ? or ..For example, in applying algebraic geometry to coding theory, one should study curves defined over . and their points with coordinates in . (such points are called .).
40#
發(fā)表于 2025-3-28 11:04:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西林县| 师宗县| 凉城县| 南阳市| 屏山县| 麟游县| 岳池县| 新乐市| 麻江县| 东港市| 聂拉木县| 马关县| 眉山市| 鄯善县| 石景山区| 晋中市| 新邵县| 旅游| 布拖县| 胶州市| 怀集县| 翼城县| 虞城县| 突泉县| 巩义市| 天水市| 康平县| 资源县| 永仁县| 南昌县| 筠连县| 两当县| 新竹县| 鄂州市| 成武县| 灵山县| 长沙市| 永寿县| 黔西县| 黔东| 广西|