找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Codes on Algebraic Curves; Serguei A. Stepanov Book 1999 Kluwer Academic/Plenum Publishers 1999 Prime.Prime number.algebra.algebraic curve

[復(fù)制鏈接]
查看: 42372|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:09:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Codes on Algebraic Curves
編輯Serguei A. Stepanov
視頻videohttp://file.papertrans.cn/229/228843/228843.mp4
圖書封面Titlebook: Codes on Algebraic Curves;  Serguei A. Stepanov Book 1999 Kluwer Academic/Plenum Publishers 1999 Prime.Prime number.algebra.algebraic curve
描述This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsf
出版日期Book 1999
關(guān)鍵詞Prime; Prime number; algebra; algebraic curve; algebraic geometry; algebraic varieties; algorithms; coding
版次1
doihttps://doi.org/10.1007/978-1-4615-4785-3
isbn_softcover978-1-4613-7167-0
isbn_ebook978-1-4615-4785-3
copyrightKluwer Academic/Plenum Publishers 1999
The information of publication is updating

書目名稱Codes on Algebraic Curves影響因子(影響力)




書目名稱Codes on Algebraic Curves影響因子(影響力)學(xué)科排名




書目名稱Codes on Algebraic Curves網(wǎng)絡(luò)公開度




書目名稱Codes on Algebraic Curves網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Codes on Algebraic Curves被引頻次




書目名稱Codes on Algebraic Curves被引頻次學(xué)科排名




書目名稱Codes on Algebraic Curves年度引用




書目名稱Codes on Algebraic Curves年度引用學(xué)科排名




書目名稱Codes on Algebraic Curves讀者反饋




書目名稱Codes on Algebraic Curves讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:39:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:03:59 | 只看該作者
5#
發(fā)表于 2025-3-22 08:46:10 | 只看該作者
Counting Points on Curves over Finite Fieldsld ..This result was proved for the first time by Hasse (in the case of elliptic curves) and Weil (in the general case) using the correspondence theory on .. Here we give an elementary proof based essentially on using only the Riemann—Roch theorem (see Stepanov [184, 185, 187], Bombieri [17], Schmid
6#
發(fā)表于 2025-3-22 16:29:09 | 只看該作者
Decoding Geometric Goppa Codesce of decoding algorithms and ending with ones on the construction of efficient algorithms which can easily be used in practice. For a detailed treatment of the complexity of algorithms we refer the reader to Aho, Hoperoft and Ulman [2].
7#
發(fā)表于 2025-3-22 17:45:40 | 只看該作者
8#
發(fā)表于 2025-3-22 22:45:31 | 只看該作者
9#
發(fā)表于 2025-3-23 04:16:17 | 只看該作者
https://doi.org/10.1007/978-3-030-53149-2In this chapter the basic notions of the theory of error-correcting codes are introduced: the Hamming distance, parameters of codes, linear codes, encoding and decoding procedures, spectrum and duality, the MacWilliams identity and Krawtchouk polynomials.
10#
發(fā)表于 2025-3-23 06:58:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德昌县| 沅陵县| 安西县| 章丘市| 瓦房店市| 西平县| 上饶县| 方山县| 甘肃省| 冕宁县| 沧州市| 安陆市| 成安县| 上思县| 津南区| 邢台县| 正蓝旗| 襄城县| 马关县| 农安县| 昌乐县| 衡阳县| 秦安县| 通化市| 容城县| 延庆县| 白朗县| 五台县| 永年县| 凤庆县| 绥化市| 襄汾县| 水城县| 阿坝县| 垦利县| 马边| 罗江县| 临泉县| 河西区| 信丰县| 永德县|