找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coarse Geometry and Randomness; école d’été de Proba Itai Benjamini Book 2013 Springer International Publishing Switzerland 2013 82B43,82B4

[復(fù)制鏈接]
樓主: Addendum
21#
發(fā)表于 2025-3-25 03:40:06 | 只看該作者
Elisabeth Lewis Corley,Joseph MegelIn this section we present an example of a bounded degree graph with a positive Cheeger constant (i.e. nonamenable graph) which is Liouville, that is, it admits no non constant bounded harmonic functions. This example shows that the theorem proved in Sect. 12 cannot be extended to general graphs.
22#
發(fā)表于 2025-3-25 11:27:35 | 只看該作者
23#
發(fā)表于 2025-3-25 13:49:06 | 只看該作者
On the Structure of Vertex Transitive Graphs,This short section contains several facts and open problems regarding vertex transitive graphs, starting with the following theorem from [BS92] which refines an earlier result of Aldous.
24#
發(fā)表于 2025-3-25 19:37:19 | 只看該作者
Percolation on Graphs,In this section we introduce and discuss some basic properties of percolation, a fundamental random process on graphs. For background on percolation see [Gri99].
25#
發(fā)表于 2025-3-25 20:31:50 | 只看該作者
Random Planar Geometry,What is a typical random surface? This question has arisen in the theory of two-dimensional quantum gravity where discrete triangulations have been considered as a discretization of a random continuum Riemann surface. As we will see the typical random surface has a geometry which is very different from the one of the Euclidean plane.
26#
發(fā)表于 2025-3-26 03:11:15 | 只看該作者
Growth and Isoperimetric Profile of Planar Graphs,In this section we review a joint work with Panos Papasoglu, see [.], in which the following is proved:
27#
發(fā)表于 2025-3-26 07:40:21 | 只看該作者
Critical Percolation on Non-Amenable Groups,For a given graph ., let . (or just .(.) when . is clear from the context). From the definition of .. we know that .(.) = 0 for any . < .., and .(.) > 0 whenever . > ... A major and natural question that arises is: Does .(..)= 0 or .(..) > 0?.
28#
發(fā)表于 2025-3-26 12:02:46 | 只看該作者
Percolation on Expanders,This section is devoted to percolation on finite graphs. More precisely we will try to understand percolation on a sequence of finite graphs, whose number of vertices tends to infinity. Detailed proofs of the material appearing in this section and additional extensions can be found at [ABS04].
29#
發(fā)表于 2025-3-26 12:42:16 | 只看該作者
Harmonic Functions on Graphs,The main goal of this section is to present the Kaimanovich-Vershik entropic criterion for the existence of harmonic function on Cayley graphs. Note that this section requires more background in probability compared to previous sections. We begin with some definition and simple facts.
30#
發(fā)表于 2025-3-26 18:11:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖江市| 永顺县| 德令哈市| 镇安县| 革吉县| 张北县| 乾安县| 莎车县| 石狮市| 霍邱县| 灌云县| 分宜县| 阿克陶县| 兰坪| 吉隆县| 乐昌市| 仙桃市| 宣化县| 丁青县| 澄江县| 衢州市| 丰原市| 田阳县| 溧水县| 柏乡县| 汉阴县| 阳城县| 青海省| 石棉县| 黄平县| 甘肃省| 景宁| 合水县| 高尔夫| 花垣县| 广水市| 分宜县| 汾阳市| 沧州市| 化隆| 横山县|