找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coalgebraic Methods in Computer Science; 11th International W Dirk Pattinson,Lutz Schr?der Conference proceedings 2012 IFIP International F

[復(fù)制鏈接]
樓主: estrange
21#
發(fā)表于 2025-3-25 04:12:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:51:24 | 只看該作者
23#
發(fā)表于 2025-3-25 15:14:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:42 | 只看該作者
25#
發(fā)表于 2025-3-25 20:32:47 | 只看該作者
Defining Context-Free Power Series Coalgebraically,braic approach provides a unified view on many, at first sight different, existing notions of algebraicity, and we apply our behavioural differential equations to produce a new proof for a classical result by Chomsky and Schützenberger, and a simple proof that the zip-operator of two algebraic streams is algebraic.
26#
發(fā)表于 2025-3-26 01:24:52 | 只看該作者
Internal Models for Coalgebraic Modal Logics,s for a modal logic. These are constructed from syntax, and yield a generalised notion of canonical model. Further, expressivity of a modal logic is shown to be characterised by factorisation of its models via internal models and the existence of cospans of internal models.
27#
發(fā)表于 2025-3-26 07:34:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:43:00 | 只看該作者
29#
發(fā)表于 2025-3-26 13:05:33 | 只看該作者
Defining Context-Free Power Series Coalgebraically,braic approach provides a unified view on many, at first sight different, existing notions of algebraicity, and we apply our behavioural differential equations to produce a new proof for a classical result by Chomsky and Schützenberger, and a simple proof that the zip-operator of two algebraic strea
30#
發(fā)表于 2025-3-26 17:01:22 | 只看該作者
Structural Operational Semantics for Continuous State Probabilistic Processes,antics of these systems can be defined as algebras and coalgebras of suitable endofunctors over ., the category of measurable spaces. In order to give a more concrete representation for these coalgebras, we present an SOS-like rule format which induces an abstract GSOS over .; this format is proved
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
轮台县| 金门县| 桐柏县| 东乡族自治县| 合水县| 永登县| 澄江县| 香河县| 扶沟县| 黎平县| 拉萨市| 黑龙江省| 滁州市| 偏关县| 隆子县| 建德市| 繁峙县| 凤冈县| 青州市| 清水河县| 平塘县| 白城市| 澄城县| 鹿邑县| 大化| 许昌县| 阳高县| 沅江市| 湘西| 如皋市| 衡山县| 波密县| 融水| 介休市| 巴彦县| 平顺县| 班玛县| 彩票| 和田县| 务川| 永德县|