找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Language Models in Cybersecurity; Threats, Exposure an Andrei Kucharavy,Octave Plancherel,Vincent Lenders Book‘‘‘‘‘‘‘‘ 2024 The Edito

[復制鏈接]
樓主: risky-drinking
11#
發(fā)表于 2025-3-23 11:02:03 | 只看該作者
Adapting LLMs to Downstream Applicationsds is provided, specifically the prompt optimization, pre-prompting and implicit prompting (system prompting), model coordination through actor agents, integration with auxiliary tools, parameter-efficient fine-tuning, further model pre-training, from-scratch retraining, and finally domain-specific distillation.
12#
發(fā)表于 2025-3-23 15:44:43 | 只看該作者
Phishing and Social Engineering in the Age of LLMse a comprehensive look, examining how AI technology orchestrates a phishing attack posing as a typical e-commerce transaction and how an LLM was used in a romance-themed cryptocurrency scam. Both scenarios underline the need for increased awareness and improved defenses against these novel and sophisticated cyber threats.
13#
發(fā)表于 2025-3-23 21:39:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:08:32 | 只看該作者
Tasks for LLMs and Their Evaluationng, Reasoning, and Text Generation. While LLMs have shown promising results, in particular as general models, their capabilities vary depending on their architecture, training dataset, and the nature of the task. We will briefly define the natural language tasks and give an overview of LLMs’ current state of the art.
15#
發(fā)表于 2025-3-24 03:14:32 | 只看該作者
16#
發(fā)表于 2025-3-24 10:26:08 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:59 | 只看該作者
18#
發(fā)表于 2025-3-24 16:51:51 | 只看該作者
19#
發(fā)表于 2025-3-24 20:53:44 | 只看該作者
Overview of Existing LLM FamiliesWhile the general public discovered . (LLMs) with ChatGPT—a generative autoregressive model, they are far from the only models in the LLM family. Various architectures and training regiments optimized for specific usages were designed throughout their development, which were then classified as different LLM families.
20#
發(fā)表于 2025-3-25 01:25:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
曲松县| 驻马店市| 全州县| 周口市| 黑龙江省| 丘北县| 龙陵县| 禄丰县| 磴口县| 湘潭市| 额尔古纳市| 普洱| 大化| 华亭县| 恩施市| 五河县| 闽清县| 顺义区| 平乐县| 固阳县| 疏附县| 淮南市| 松桃| 鲁山县| 台江县| 桓台县| 西盟| 呼和浩特市| 外汇| 铅山县| 永靖县| 二连浩特市| 肥城市| 仁化县| 库车县| 盈江县| 香港| 中西区| 泽库县| 马龙县| 察隅县|