找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Closure Properties for Heavy-Tailed and Related Distributions; An Overview Remigijus Leipus,Jonas ?iaulys,Dimitrios Konstanti Book 2023 The

[復(fù)制鏈接]
樓主: interleukins
11#
發(fā)表于 2025-3-23 09:58:21 | 只看該作者
Convolution-Root Closure,ons is caused by the inclusion of . to the same family. Such an implication is called a convolution-root closure. This chapter is devoted to the convolution-root closure properties for the distribution classes described in Chap. .. We determine the classes which are closed under convolution roots and which are not.
12#
發(fā)表于 2025-3-23 17:18:07 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:01 | 只看該作者
978-3-031-34552-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
14#
發(fā)表于 2025-3-23 22:38:39 | 只看該作者
Closure Properties for Heavy-Tailed and Related Distributions978-3-031-34553-1Series ISSN 2191-544X Series E-ISSN 2191-5458
15#
發(fā)表于 2025-3-24 06:02:51 | 只看該作者
Was verursacht Schizophrenien?,ons is caused by the inclusion of . to the same family. Such an implication is called a convolution-root closure. This chapter is devoted to the convolution-root closure properties for the distribution classes described in Chap. .. We determine the classes which are closed under convolution roots and which are not.
16#
發(fā)表于 2025-3-24 07:02:38 | 只看該作者
Remigijus Leipus,Jonas ?iaulys,Dimitrios KonstantiPresents a concise overview of closure properties of heavy-tailed and related distributions.Features several examples and counterexamples that provide an insight into the theory.Provides numerous refe
17#
發(fā)表于 2025-3-24 13:09:36 | 只看該作者
18#
發(fā)表于 2025-3-24 17:34:06 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:17 | 只看該作者
20#
發(fā)表于 2025-3-25 01:32:22 | 只看該作者
Zusammenfassende Schlussbemerkungen,s. In Sect. 3.3, we discuss the convolution closure properties in relation to the notion of max-sum equivalence. In further sections, we overview and discuss the closure properties of the heavy-tailed and related distributions, introduced in Chap. ., under strong/weak tail-equivalence, convolution,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 22:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮北市| 台北县| 都安| 昌吉市| 荆门市| 辽中县| 屯昌县| 澄城县| 双江| 武夷山市| 武陟县| 丹寨县| 佳木斯市| 开封县| 云南省| 古交市| 遂昌县| 商城县| 柞水县| 葵青区| 湟中县| 治县。| 乌苏市| 会理县| 宝清县| 永昌县| 铜山县| 额尔古纳市| 瓦房店市| 贵阳市| 互助| 伊宁县| 蛟河市| 汝州市| 贵州省| 全州县| 柘荣县| 家居| 武定县| 昆明市| 沛县|