找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clinical Image-Based Procedures; 11th Workshop, CLIP Yufei Chen,Marius George Linguraru,Cristina Oyarzu Conference proceedings 2023 The Ed

[復(fù)制鏈接]
樓主: 表范圍
31#
發(fā)表于 2025-3-26 22:18:31 | 只看該作者
https://doi.org/10.1007/978-981-16-4023-0paper, we propose a feature patch based attention model to improve the classification accuracy of dental caries in CBCT images. We extract overlapping patches from the 3D feature maps and assign every patch with a corresponding weight computed by adaptive learning to achieve automatic screening of r
32#
發(fā)表于 2025-3-27 01:36:16 | 只看該作者
,Fast Auto-differentiable Digitally Reconstructed Radiographs for?Solving Inverse Problems in?Intraoemented this vectorized version of Siddon’s method in PyTorch, taking advantage of the library’s strong automatic differentiation engine to make this DRR generator fully differentiable with respect to its parameters. Additionally, using GPU-accelerated tensor computation enables our vectorized imple
33#
發(fā)表于 2025-3-27 08:53:04 | 只看該作者
,Machine Learning Based Approach for?Motion Detection and?Estimation in?Routinely Acquired Low Resoll is trained to evaluate the severity and time point of possible motion..The model for the first phase achieves a precision of 20.78?% and a recall of 69.57?%, while the model for the second phase reaches a precision of 67.71?% and a recall of 98.49?% to detect non-negligible motion. Despite low pre
34#
發(fā)表于 2025-3-27 11:42:08 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:52 | 只看該作者
,STAU-Net: A Spatial Structure Attention Network for?3D Coronary Artery Segmentation,ets the loss contextual information by fusing the feature map of the upper decoder. Also, the framework first resamples the input to a fixed size to implement training and up-sample to original size by customized post-processing at output stage. Compared with other related segmentation networks, the
36#
發(fā)表于 2025-3-27 18:06:42 | 只看該作者
,Feature Patch Based Attention Model for?Dental Caries Classification,paper, we propose a feature patch based attention model to improve the classification accuracy of dental caries in CBCT images. We extract overlapping patches from the 3D feature maps and assign every patch with a corresponding weight computed by adaptive learning to achieve automatic screening of r
37#
發(fā)表于 2025-3-27 22:09:24 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:00 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:41 | 只看該作者
40#
發(fā)表于 2025-3-28 10:57:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿图什市| 玛沁县| 辽宁省| 郧西县| 浑源县| 光泽县| 湛江市| 镇雄县| 从江县| 双辽市| 新泰市| 诸城市| 三门县| 兰溪市| 镇赉县| 石家庄市| 长子县| 佛山市| 达拉特旗| 龙井市| 卢龙县| 台东市| 永兴县| 乐清市| 陇西县| 喜德县| 新郑市| 台江县| 丹凤县| 法库县| 德清县| 武义县| 武城县| 新兴县| 齐河县| 营口市| 黔江区| 武城县| 当涂县| 辽阳市| 台东市|