找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clinical Image-Based Procedures; 11th Workshop, CLIP Yufei Chen,Marius George Linguraru,Cristina Oyarzu Conference proceedings 2023 The Ed

[復制鏈接]
查看: 14136|回復: 44
樓主
發(fā)表于 2025-3-21 16:07:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Clinical Image-Based Procedures
副標題11th Workshop, CLIP
編輯Yufei Chen,Marius George Linguraru,Cristina Oyarzu
視頻videohttp://file.papertrans.cn/229/228004/228004.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Clinical Image-Based Procedures; 11th Workshop, CLIP  Yufei Chen,Marius George Linguraru,Cristina Oyarzu Conference proceedings 2023 The Ed
描述This book constitutes the proceedings of the 11th Workshop on Clinical Image-Based Procedures, CLIP 2022, which was held in conjunction with MICCAI 2022, in Singapore in September 2022.?The 9 full papers included in this book were carefully reviewed and selected from 12 submissions. They focus on the applicability of basic research methods in the clinical practice by creating holistic patient models as an important step towards personalized healthcare.?.
出版日期Conference proceedings 2023
關鍵詞artificial intelligence; classification; clinical diagnostics support; communication channels (informat
版次1
doihttps://doi.org/10.1007/978-3-031-23179-7
isbn_softcover978-3-031-23178-0
isbn_ebook978-3-031-23179-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Clinical Image-Based Procedures影響因子(影響力)




書目名稱Clinical Image-Based Procedures影響因子(影響力)學科排名




書目名稱Clinical Image-Based Procedures網(wǎng)絡公開度




書目名稱Clinical Image-Based Procedures網(wǎng)絡公開度學科排名




書目名稱Clinical Image-Based Procedures被引頻次




書目名稱Clinical Image-Based Procedures被引頻次學科排名




書目名稱Clinical Image-Based Procedures年度引用




書目名稱Clinical Image-Based Procedures年度引用學科排名




書目名稱Clinical Image-Based Procedures讀者反饋




書目名稱Clinical Image-Based Procedures讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:37 | 只看該作者
https://doi.org/10.1007/978-981-16-4023-0similar to the target domain for domain adaptation. Compared to the ‘source-target pair’ domain adaptation method using all source domains, this method improves accuracy by up to 10. and reduces computation time by up to 43., based on the SEED-III and SEED-IV datasets.
板凳
發(fā)表于 2025-3-22 03:41:46 | 只看該作者
,Conditional Domain Adaptation Based on?Initial Distribution Discrepancy for?EEG Emotion Recognitionsimilar to the target domain for domain adaptation. Compared to the ‘source-target pair’ domain adaptation method using all source domains, this method improves accuracy by up to 10. and reduces computation time by up to 43., based on the SEED-III and SEED-IV datasets.
地板
發(fā)表于 2025-3-22 06:39:24 | 只看該作者
5#
發(fā)表于 2025-3-22 09:52:00 | 只看該作者
Rural Latin America in Transitionhich can extract discriminative features from radio-frequency (RF) signals generated from QUS. Compared with the conventional QUS method using SOS, experimental results indicate that our proposed method achieves superior performance, which can be beneficial to the osteoporosis screening.
6#
發(fā)表于 2025-3-22 14:59:35 | 只看該作者
7#
發(fā)表于 2025-3-22 18:15:04 | 只看該作者
https://doi.org/10.1007/978-981-16-4023-0meters that aid in monitoring ocular and cardiovascular diseases. The results on the given data are comparable to the performance of a trained expert and the methods are already being used in clinical practice.
8#
發(fā)表于 2025-3-22 22:27:44 | 只看該作者
9#
發(fā)表于 2025-3-23 05:12:29 | 只看該作者
,Convolutional Redistribution Network for?Multi-view Medical Image Diagnosis,acts essential information from multi-view data to generate a series of “good and diverse” pseudo views for integration. The experiment results show that proposed model achieves good performance on pancreatic tumor classification task as well as the OrganMNIST3D classification task of the MedMNIST public datasets.
10#
發(fā)表于 2025-3-23 08:42:57 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广水市| 昭通市| 宁蒗| 龙泉市| 诸暨市| 清河县| 罗定市| 乌兰察布市| 祁东县| 宣化县| 内黄县| 达州市| 梁河县| 科尔| 四平市| 辛集市| 晋中市| 广平县| 临洮县| 曲靖市| 博爱县| 山东| 慈利县| 金湖县| 木里| 祁阳县| 滦南县| 临沧市| 始兴县| 涿州市| 中方县| 台中市| 莱州市| 泸西县| 阜康市| 乌拉特前旗| 彭阳县| 甘南县| 金沙县| 新河县| 宽城|