找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Climate Change and Water Security; Select Proceedings o Sreevalsa Kolathayar,Arpita Mondal,Siau Chen Chian Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: HAG
31#
發(fā)表于 2025-3-27 00:03:37 | 只看該作者
Flood-Proof House: An Alternative Approach to Conventional Housing Typologyral design is done for both afloat and aground conditions, with consideration of stability for the former and seismic resistance for the latter. The house is founded on a steel hollow base as a hull when afloat. The upper part of the house is made of bamboo, wood, and glass. Ansys 19.1. is used to analyze the fluid-solid interaction.
32#
發(fā)表于 2025-3-27 04:45:28 | 只看該作者
33#
發(fā)表于 2025-3-27 05:32:48 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:28 | 只看該作者
Flood Risk Assessment at the Douro River Estuaryed with CC conditions, and extreme flood discharges (EFD), resulting from the 50, 100, and 1000?years return period estimation. Results showed that for the same flood river discharge, a water level variation from 13 to 40?cm is expected at the estuarine mouth, depending on the CC scenario. However,
35#
發(fā)表于 2025-3-27 14:43:25 | 只看該作者
Flood Modelling for an Urban Indian Catchment: Challenges and Way Forwardntensive and requires good resolution meteorological, hydraulic, and topographical data sets. Therefore, the unavailability of long-term and reliable data sets in developing and underdeveloping countries cause a major hindrance for modelling in such catchments. The current study also adapts alternat
36#
發(fā)表于 2025-3-27 21:06:12 | 只看該作者
37#
發(fā)表于 2025-3-27 22:56:23 | 只看該作者
Physics Informed Neural Network for Spatial-Temporal Flood Forecastingal simulations of the Saint Venant Equations for training and evaluation of the PINN model. The results demonstrate that the PINN model performs better than the ANN Models and is suitable for water depth forecasting.
38#
發(fā)表于 2025-3-28 03:14:36 | 只看該作者
Feature Selection for Rainfall Prediction and Drought Assessment Using Bayesian Network Technique against the prediction feature from the BN model. An evaluation of the hybrid (BN-ANN) model performance, in terms of suitable statistical measures, indicates good accuracy, affirming that BN is a promising tool for feature selection in multivariate hydrologic systems. Also, the predicted monthly r
39#
發(fā)表于 2025-3-28 07:03:05 | 只看該作者
Open-Access Precipitation Networks and Machine Learning Algorithms as Tools for Flood Severity Preditiple triggers to predict the exceedance of critical water levels. As a result, severe floods can be recognized earlier and with higher reliability, providing more response time for local authorities. Although the limited data availability increases the risk of overfitting and lower performance for
40#
發(fā)表于 2025-3-28 13:14:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东宁县| 革吉县| 巴楚县| 都兰县| 南靖县| 长宁县| 武威市| 绥棱县| 天祝| 永泰县| 定安县| 融水| 高密市| 梓潼县| 离岛区| 定远县| 扬中市| 茶陵县| 左贡县| 宜兴市| 通城县| 元阳县| 绥芬河市| 滕州市| 阿鲁科尔沁旗| 康乐县| 墨脱县| 汝阳县| 临沂市| 轮台县| 施甸县| 临洮县| 黔江区| 朝阳市| 伽师县| 奈曼旗| 娄烦县| 辰溪县| 平乡县| 普兰县| 思茅市|