找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Proceedings of the T F. Brackx,R. Delanghe,H. Serras Conference proceedin

[復(fù)制鏈接]
樓主: Prehypertension
41#
發(fā)表于 2025-3-28 16:11:33 | 只看該作者
42#
發(fā)表于 2025-3-28 20:03:58 | 只看該作者
43#
發(fā)表于 2025-3-28 23:53:52 | 只看該作者
44#
發(fā)表于 2025-3-29 03:58:55 | 只看該作者
Responsible Consumption and Sustainabilityaces ..(Γ, ?(C)), where Γ is the unit sphere ..(m = 1, 2,…) and ?(C)) is the algebra of complex quaternions. The investigation is based on the local-trajectory method for studying the invertibility of bounded linear operators with shifts in a Hilbert space.
45#
發(fā)表于 2025-3-29 07:37:30 | 只看該作者
Antonio Chamorro-Mera,Rafael Robina-Ramírez, can be expressed as a sum of products of polynomials and left and anti-left monogenic functions. Thereby, our key assumption is that Ω is special .-normal. As an application of this result, we show how the general solution of Stokes’ equations in three dimensions can be represented by two left mon
46#
發(fā)表于 2025-3-29 13:40:14 | 只看該作者
47#
發(fā)表于 2025-3-29 18:42:11 | 只看該作者
https://doi.org/10.1007/978-3-319-55206-4reby . is a Clifford algebra over the field of real numbers. Using a different from the usual one hypercomplex structure of .. we get by this way a natural generalization of the Cauchy approach to monogenic functions which seems to be not possible so far. Exemplary this concept applies to transfer i
48#
發(fā)表于 2025-3-29 23:05:50 | 只看該作者
C*-Algebras of Nonlocal Quaternionic Convolution Type Operatorsaces ..(Γ, ?(C)), where Γ is the unit sphere ..(m = 1, 2,…) and ?(C)) is the algebra of complex quaternions. The investigation is based on the local-trajectory method for studying the invertibility of bounded linear operators with shifts in a Hilbert space.
49#
發(fā)表于 2025-3-29 23:54:00 | 只看該作者
50#
發(fā)表于 2025-3-30 04:23:03 | 只看該作者
Aleksandra Machnik,Anna Królikowska-TomczakQuantum multiparameter deformation of real Clifford algebras is proposed. The corresponding irreducible representations are found.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉安市| 九龙坡区| 垦利县| 武冈市| 潢川县| 都兰县| 祁东县| 河北区| 托克托县| 郁南县| 沾化县| 两当县| 靖安县| 长阳| 平邑县| 巴楚县| 钟山县| 丹凤县| 逊克县| 兴仁县| 灵寿县| 铅山县| 潼关县| 抚宁县| 高安市| 临邑县| 宁乡县| 毕节市| 鲁甸县| 兴海县| 万荣县| 凤台县| 宜城市| 三门县| 延吉市| 上犹县| 大冶市| 布拖县| 怀宁县| 江城| 昔阳县|