找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; A. Micali,R. Boudet,J. Helmstetter Book 1992 Springer Science+Business M

[復(fù)制鏈接]
樓主: Confer
21#
發(fā)表于 2025-3-25 05:53:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:12 | 只看該作者
23#
發(fā)表于 2025-3-25 14:39:17 | 只看該作者
24#
發(fā)表于 2025-3-25 18:14:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:09:02 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:46 | 只看該作者
Elena Ferrer,Rafael Santamaría,Nuria Suárezion groups over the field of complex numbers is now extended to the field of real numbers..Notation. ., . denote the reals, complexes and quaternions, respectively. If . is any field, .. denotes the . -dimensional vector space over . and .(.) denotes the matrix algebra of . matrices over ..
27#
發(fā)表于 2025-3-26 04:32:37 | 只看該作者
Responsible Business in a Changing Worldsymplectic Clifford algebra invented by Albert Crumeyrolle in 1975. Both Clifford algebras are defined as the deformations (mutations) of the Grassmann or symmetric algebras respectively. The presented algebraic formalism is particularly well suited for the description of the multi-fermionic and mul
28#
發(fā)表于 2025-3-26 09:58:04 | 只看該作者
29#
發(fā)表于 2025-3-26 12:53:09 | 只看該作者
30#
發(fā)表于 2025-3-26 18:08:22 | 只看該作者
Responsible Management – Was ist das?erable interest in analogous algebras constructed for forms of higher degree. Because of the structure of these algebras, the most productive analysis seems to be via representations. General results about these representations are presented, and specific examples are demonstrated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万年县| 垦利县| 彩票| 白城市| 汨罗市| 阜平县| 冀州市| 靖西县| 泰来县| 乐平市| 永安市| 阳西县| 榆林市| 西和县| 道真| 手游| 阜平县| 宁明县| 奉贤区| 乌拉特前旗| 涿州市| 广宗县| 富源县| 渝北区| 海城市| 比如县| 龙井市| 会泽县| 永寿县| 富宁县| 乌鲁木齐市| 炎陵县| 定结县| 绥芬河市| 佛学| 阜新| 镇远县| 宁海县| 措勤县| 广德县| 陇南市|