找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and Lie Theory; Eckhard Meinrenken Book 2013 Springer-Verlag Berlin Heidelberg 2013 Clifford algebras.Dirac operators.Li

[復制鏈接]
樓主: 臉紅
21#
發(fā)表于 2025-3-25 04:46:53 | 只看該作者
22#
發(fā)表于 2025-3-25 09:52:33 | 只看該作者
The Clifford algebra of a reductive Lie algebra,elements onto the linear subspace .. The chapter concludes with a conjecture of Kostant, expressing the resulting filtration of . in terms of the “principal TDS”. The conjecture was established in 2012 by Joseph, in conjunction with work of Alekseev–Moreau.
23#
發(fā)表于 2025-3-25 13:23:17 | 只看該作者
24#
發(fā)表于 2025-3-25 17:18:39 | 只看該作者
Clifford algebras,terior algebra ∧(.), and in the general case the Clifford algebra can be regarded as a deformation of the exterior algebra. In this chapter after constructing the Clifford algebra and describing its basic properties, we study in detail the quantization map .: ∧(.)→Cl(.) and justify the term “quantiz
25#
發(fā)表于 2025-3-25 23:50:32 | 只看該作者
26#
發(fā)表于 2025-3-26 01:33:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:24:39 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:37 | 只看該作者
Weil algebras,ng commutative .-differential algebras with connection. As an associative algebra, the Weil algebra is the tensor product of the symmetric algebra and the exterior algebra of?.. By considering non-commutative .-differential algebras with connection, we are led to introduce also a non-commutative Wei
29#
發(fā)表于 2025-3-26 15:56:54 | 只看該作者
Quantum Weil algebras,y the enveloping algebra . of a Lie algebra is a quantization of the symmetric algebra .. In this chapter we will consider a similar quantization of the Weil algebra ., for any Lie algebra . with a non-degenerate invariant inner product .. For a suitable choice of generators, the quantum Weil algebr
30#
發(fā)表于 2025-3-26 18:25:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
江都市| 上高县| 延津县| 岳阳市| 舟曲县| 元朗区| 博爱县| 南丹县| 永兴县| 叶城县| 柏乡县| 陇川县| 桂平市| 庆安县| 永定县| 浦江县| 塔城市| 梧州市| 久治县| 朝阳市| 新干县| 洛浦县| 化州市| 建湖县| 山丹县| 洞头县| 卫辉市| 宣恩县| 孟津县| 饶平县| 荃湾区| 庆城县| 岐山县| 横山县| 务川| 神木县| 丹寨县| 永泰县| 昌图县| 高陵县| 水城县|