找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and Lie Theory; Eckhard Meinrenken Book 2013 Springer-Verlag Berlin Heidelberg 2013 Clifford algebras.Dirac operators.Li

[復(fù)制鏈接]
樓主: 臉紅
11#
發(fā)表于 2025-3-23 11:08:19 | 只看該作者
Symmetric bilinear forms, product of reflections, and Witt’s Theorem giving a partial normal form for quadratic forms. The theory of split symmetric bilinear forms is found to have many parallels to the theory of symplectic forms, and we will give a discussion of the Lagrangian Grassmannian in this spirit.
12#
發(fā)表于 2025-3-23 16:00:43 | 只看該作者
13#
發(fā)表于 2025-3-23 19:40:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:58:22 | 只看該作者
https://doi.org/10.1057/9780230505537ible Clifford module, the so-called spinor module. We give a discussion of pure spinors and their relation with Lagrangian subspaces, followed by a proof of Cartan’s triality principle. The classification of spinor modules for the case .=?. is used to derive interesting properties of the spin groups, with applications to compact Lie groups.
15#
發(fā)表于 2025-3-24 03:27:52 | 只看該作者
https://doi.org/10.1057/9780230505537s to present a proof of this result, due to E. Petracci, which is similar to the proof that the quantization map for Clifford algebras is an isomorphism. The proof builds on a discussion of the Hopf algebra structure on the enveloping algebra, and the fact that the quantization map .. preserves the comultiplication.
16#
發(fā)表于 2025-3-24 07:10:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:27:29 | 只看該作者
Palgrave Macmillan Asian Business Series interpretation in terms of the spin representation. Following Kostant’s work, we consider applications of the cubic Dirac operator . for equal rank pairs. This includes the Gross–Kostant–Ramond–Sternberg results on multiplets of representations for equal rank Lie subalgebras, as well as aspects of Dirac induction.
18#
發(fā)表于 2025-3-24 15:36:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:35:41 | 只看該作者
https://doi.org/10.1057/9780230505537 in?∧.(.). These questions will be studied using the spin representation for the vector space ..⊕., with bilinear form given by the pairing. One of the outcomes of this discussion is the construction of a remarkable ∧(.)-valued function on the orthogonal Lie algebra, which will play a role in our discussion of the Duflo theorem in Chapter?..
20#
發(fā)表于 2025-3-25 02:55:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲周县| 洞头县| 郎溪县| 文化| 大连市| 来凤县| 邹城市| 巫溪县| 道真| 都江堰市| 绵阳市| 岗巴县| 舟曲县| 思南县| 罗田县| 顺昌县| 晋城| 图木舒克市| 绥宁县| 忻城县| 长垣县| 波密县| 六盘水市| 长汀县| 仙桃市| 邛崃市| 景东| 罗定市| 凌海市| 汉中市| 启东市| 桂阳县| 上栗县| 桓仁| 嵊州市| 太仓市| 高平市| 固安县| 徐州市| 商河县| 天门市|