找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebra to Geometric Calculus; A Unified Language f David Hestenes,Garret Sobczyk Book 1984 Springer Science+Business Media Dordre

[復(fù)制鏈接]
樓主: Cataplexy
11#
發(fā)表于 2025-3-23 10:16:05 | 只看該作者
J. D. Garrett,J. R. German,J. M. Espinoc Algebra brings new methods and ideas to Lie theory which could simplify the theory and even lead to new results. Indeed, the structure of Geometric Algebra has so much in common with Lie algebra that we would be surprised if they could not be unified in a productive way.
12#
發(fā)表于 2025-3-23 15:30:45 | 只看該作者
Book 1984s versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called ‘Clifford Algebra‘, though we prefer the name ‘Geometric Algebm‘ suggested by Clifford himself. Many distinct algebraic systems have been adapted o
13#
發(fā)表于 2025-3-23 19:45:07 | 只看該作者
https://doi.org/10.1007/978-3-031-26833-5This chapter shows the advantages of developing the theory of linear and multilinear functions on finite dimensional spaces with Geometric Calculus. The theory is sufficiently well developed here to be readily applied to most problems of linear algebra.
14#
發(fā)表于 2025-3-23 23:01:38 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:39 | 只看該作者
Linear and Multilinear Functions,This chapter shows the advantages of developing the theory of linear and multilinear functions on finite dimensional spaces with Geometric Calculus. The theory is sufficiently well developed here to be readily applied to most problems of linear algebra.
16#
發(fā)表于 2025-3-24 08:57:09 | 只看該作者
Directed Integration Theory,This chapter describes some basic contributions of Geometric Calculus to the theory of integration. The directed integral enables us to formulate and prove a few comprehensive theorems from which the main results of both real and complex variable theory are easily obtained.
17#
發(fā)表于 2025-3-24 11:48:22 | 只看該作者
18#
發(fā)表于 2025-3-24 16:52:16 | 只看該作者
19#
發(fā)表于 2025-3-24 23:00:06 | 只看該作者
20#
發(fā)表于 2025-3-25 01:02:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 蕉岭县| 高台县| 内乡县| 新津县| 阿合奇县| 班戈县| 阜城县| 稻城县| 斗六市| 廊坊市| 兴和县| 丰城市| 台江县| 华容县| 普宁市| 临湘市| 枝江市| 绥宁县| 华安县| 萍乡市| 洞头县| 庐江县| 蒙城县| 普兰县| 谢通门县| 大余县| 绥棱县| 正定县| 福建省| 景宁| 新野县| 高雄县| 建宁县| 鹤庆县| 九江县| 边坝县| 旌德县| 德江县| 桦甸市| 眉山市|