找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebra and Spinor-Valued Functions; A Function Theory fo R. Delanghe,F. Sommen,V. Sou?ek Book 1992 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: informed
11#
發(fā)表于 2025-3-23 13:14:36 | 只看該作者
https://doi.org/10.1007/978-1-4614-7574-3After a comprehensive study of the properties of spinor-valued solutions to the Dirac equation, we extend this study to spinor-valued differential forms.
12#
發(fā)表于 2025-3-23 14:54:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:04 | 只看該作者
Clifford Algebras and Spinor Spaces,The aim of this chapter is to gather some basic results concerning real and complex Clifford algebras. All material covered is classical, exception made of the approach given in §§4.7 – 4.8 to the explicit realization of spinor space and a Hermitian structure on it.
14#
發(fā)表于 2025-3-24 01:03:25 | 只看該作者
Monogenic functions,This chapter is entirely devoted to fundamental concepts concerning nullsolutions of the Dirac operator.
15#
發(fā)表于 2025-3-24 05:42:33 | 只看該作者
16#
發(fā)表于 2025-3-24 09:27:36 | 只看該作者
Monogenic differential forms and residues,After a comprehensive study of the properties of spinor-valued solutions to the Dirac equation, we extend this study to spinor-valued differential forms.
17#
發(fā)表于 2025-3-24 11:30:14 | 只看該作者
Haematopoietic Syndrome in Pigs,presented as a 1-1 map between holomorphic solutions of the massless field equation on a domain in the complexified Minkowski space and certain cohomology groups on the corresponding region in the twistor space (see [27]). A systematic description of the Penrose transform in this setting can be found in the book by Ward and Wells ([88]).
18#
發(fā)表于 2025-3-24 15:27:15 | 只看該作者
Clifford analysis and the Penrose transform,presented as a 1-1 map between holomorphic solutions of the massless field equation on a domain in the complexified Minkowski space and certain cohomology groups on the corresponding region in the twistor space (see [27]). A systematic description of the Penrose transform in this setting can be found in the book by Ward and Wells ([88]).
19#
發(fā)表于 2025-3-24 20:50:57 | 只看該作者
6樓
20#
發(fā)表于 2025-3-25 00:45:04 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义市| 西安市| 惠东县| 墨竹工卡县| 白河县| 沂水县| 乌拉特后旗| 阿坝县| 吉林省| 名山县| 集贤县| 永仁县| 柞水县| 清镇市| 兰州市| 东方市| 彭阳县| 大港区| 鄂托克前旗| 新野县| 信宜市| 什邡市| 郁南县| 马山县| 丰镇市| 阿拉善左旗| 东乡| 姚安县| 胶南市| 鹿泉市| 麻栗坡县| 横峰县| 上虞市| 天祝| 台州市| 万州区| 淳化县| 红桥区| 青浦区| 贵阳市| 华亭县|