找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford (Geometric) Algebras; with applications to William E. Baylis Conference proceedings 1996 Birkh?user Boston 1996 Albert Einstein.Ph

[復制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 06:46:15 | 只看該作者
22#
發(fā)表于 2025-3-25 08:15:55 | 只看該作者
https://doi.org/10.1057/9781137409546of the line element, . The quantity . is derived from the .-function via .where the {e.} are a coordinate frame. Hence, in forming ., all reference to the rotation gauge is lost — GR deals solely with quantities which transform as scalars under rotation-gauge transformations.
23#
發(fā)表于 2025-3-25 11:51:38 | 只看該作者
https://doi.org/10.1007/978-3-030-59463-3 vector products, representing surfaces and higher-dimensional objects, allow simple but rigorous descriptions of rotations, reflections, and other geometric transformations. The name Clifford algebra honors the English mathematician William Kingdon Clifford (1845–79), who recognized the importance
24#
發(fā)表于 2025-3-25 17:51:05 | 只看該作者
Non-Governmental Organizations,uation and the bilinear covariants are discussed. The Fierz identities are sufficient to reconstruct a Dirac spinor from its bilinear covariants, up to a phase. However, the Weyl and Majorana spinors cannot be reconstructed using the Fierz identities alone. This paper introduces a new concept, the b
25#
發(fā)表于 2025-3-25 21:50:17 | 只看該作者
26#
發(fā)表于 2025-3-26 01:01:04 | 只看該作者
27#
發(fā)表于 2025-3-26 08:02:03 | 只看該作者
Kristi Govella,Vinod K. Aggarwalnsions, their generalization to higher dimensions being self-evident. A discussion of some of the basic ideas of Riemannian geometry is included. The reader may wish to refer to [15] and [6] for more details and more general proofs.
28#
發(fā)表于 2025-3-26 11:44:49 | 只看該作者
29#
發(fā)表于 2025-3-26 15:02:00 | 只看該作者
30#
發(fā)表于 2025-3-26 20:50:50 | 只看該作者
https://doi.org/10.1007/978-1-4899-1013-4e usually find that some fresh insight is obtained, often on old questions. The oldest question of 20th century physics is the interpretation of quantum mechanics, and in this lecture we aim to discuss some of the light that an STA approach can throw upon this issue. This will be undertaken in the c
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 18:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青阳县| 建始县| 肃南| 星座| 阜南县| 兴文县| 汤原县| 新巴尔虎左旗| 北流市| 德庆县| 北票市| 临桂县| 太谷县| 南召县| 鄂伦春自治旗| 九江市| 西乌珠穆沁旗| 景泰县| 温泉县| 湖北省| 江油市| 泸水县| 威信县| 木里| 日喀则市| 汾阳市| 威海市| 汤原县| 八宿县| 剑河县| 将乐县| 芷江| 麻栗坡县| 海盐县| 邹平县| 南丹县| 卢湾区| 海兴县| 苗栗市| 海城市| 达孜县|