找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification, Clustering, and Data Mining Applications; Proceedings of the M David Banks,Frederick R. McMorris,Wolfgang Gaul Conference p

[復(fù)制鏈接]
查看: 51190|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:53:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classification, Clustering, and Data Mining Applications
副標(biāo)題Proceedings of the M
編輯David Banks,Frederick R. McMorris,Wolfgang Gaul
視頻videohttp://file.papertrans.cn/228/227224/227224.mp4
概述Includes supplementary material:
叢書名稱Studies in Classification, Data Analysis, and Knowledge Organization
圖書封面Titlebook: Classification, Clustering, and Data Mining Applications; Proceedings of the M David Banks,Frederick R. McMorris,Wolfgang Gaul Conference p
描述Modern data analysis stands at the interface of statistics, computer science, and discrete mathematics. This volume describes new methods in this area, with special emphasis on classification and cluster analysis. Those methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.
出版日期Conference proceedings 2004
關(guān)鍵詞Cluster analysis; Graph; Projection pursuit; Sim; Vertex; algorithms; clustering; complexity; computer scien
版次1
doihttps://doi.org/10.1007/978-3-642-17103-1
isbn_softcover978-3-540-22014-5
isbn_ebook978-3-642-17103-1Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Classification, Clustering, and Data Mining Applications影響因子(影響力)




書目名稱Classification, Clustering, and Data Mining Applications影響因子(影響力)學(xué)科排名




書目名稱Classification, Clustering, and Data Mining Applications網(wǎng)絡(luò)公開度




書目名稱Classification, Clustering, and Data Mining Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classification, Clustering, and Data Mining Applications被引頻次




書目名稱Classification, Clustering, and Data Mining Applications被引頻次學(xué)科排名




書目名稱Classification, Clustering, and Data Mining Applications年度引用




書目名稱Classification, Clustering, and Data Mining Applications年度引用學(xué)科排名




書目名稱Classification, Clustering, and Data Mining Applications讀者反饋




書目名稱Classification, Clustering, and Data Mining Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:58 | 只看該作者
978-3-540-22014-5Springer-Verlag Berlin Heidelberg 2004
板凳
發(fā)表于 2025-3-22 02:09:10 | 只看該作者
地板
發(fā)表于 2025-3-22 04:37:17 | 只看該作者
https://doi.org/10.1007/978-981-10-8980-0e representation of each cluster simultaneously. In its adaptive version, at each iteration of these algorithms there is a different distance for the comparison of each cluster with its representation. In this paper, we present a dynamic cluster method based on .. distances for quantitative data.
5#
發(fā)表于 2025-3-22 12:10:39 | 只看該作者
https://doi.org/10.1007/978-3-030-87710-1sed on calculating the center of gravity. We present in this paper an extension of self-organizing maps to dissimilarity data. This extension allows to apply this algorithm to numerous types of data in a convenient way.
6#
發(fā)表于 2025-3-22 15:58:52 | 只看該作者
7#
發(fā)表于 2025-3-22 19:59:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:55:34 | 只看該作者
Chinese Culture: The Syntax of the Languagenuous stochastic process. The number of clusters is treated as unknown and the convergence of the clusterwise algorithm is discussed. The approach is compared with other methods via an application to stock-exchange data.
9#
發(fā)表于 2025-3-23 03:41:26 | 只看該作者
Computer-Mediated Teacher Feedback,Several standardization methods are investigated in conjunction with the .-means algorithm under various conditions. We find that traditional standardization methods (i.e., .-scores) are inferior to alternative standardization methods. Future suggestions concerning the combination of standardization and variable selection are considered.
10#
發(fā)表于 2025-3-23 06:41:50 | 只看該作者
Computer-Mediated Teacher Feedback,The paper proposes a new method to control the level of separation of components using a single parameter. An illustration for the latent class model (mixture of conditionally independent multinomial distributions) is provided. Further extensions to other finite mixture models are discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 19:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三门峡市| 南投县| 济阳县| 寿阳县| 辽中县| 右玉县| 金昌市| 琼结县| 湖口县| 仁寿县| 花莲县| 扎兰屯市| 淮阳县| 定陶县| 宾川县| 茌平县| 孙吴县| 博客| 凤凰县| 枣庄市| 黄浦区| 普陀区| 红安县| 屯门区| 嘉鱼县| 长沙市| 云安县| 望都县| 沧州市| 杭锦后旗| 靖安县| 闽清县| 贵溪市| 阳高县| 德昌县| 北安市| 中江县| 永安市| 元朗区| 诸暨市| 昭通市|