找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification, (Big) Data Analysis and Statistical Learning; Francesco Mola,Claudio Conversano,Maurizio Vichi Conference proceedings 2018

[復(fù)制鏈接]
查看: 25193|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:50:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classification, (Big) Data Analysis and Statistical Learning
編輯Francesco Mola,Claudio Conversano,Maurizio Vichi
視頻videohttp://file.papertrans.cn/228/227221/227221.mp4
概述Presents the latest findings in classification, statistical learning, and data analysis, including big data analytics and social networks.Features a variety of applications in economics, environmental
叢書名稱Studies in Classification, Data Analysis, and Knowledge Organization
圖書封面Titlebook: Classification, (Big) Data Analysis and Statistical Learning;  Francesco Mola,Claudio Conversano,Maurizio Vichi Conference proceedings 2018
描述.This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, heldin Santa Margherita di Pula (Cagliari), Italy, October 8–10, 2015..
出版日期Conference proceedings 2018
關(guān)鍵詞00B25, 03-06, 03C45, 91C15, 62H30, 68T10, 91C20, 91D30; classification; big data; statistical learning;
版次1
doihttps://doi.org/10.1007/978-3-319-55708-3
isbn_softcover978-3-319-55707-6
isbn_ebook978-3-319-55708-3Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Classification, (Big) Data Analysis and Statistical Learning影響因子(影響力)




書目名稱Classification, (Big) Data Analysis and Statistical Learning影響因子(影響力)學(xué)科排名




書目名稱Classification, (Big) Data Analysis and Statistical Learning網(wǎng)絡(luò)公開度




書目名稱Classification, (Big) Data Analysis and Statistical Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classification, (Big) Data Analysis and Statistical Learning被引頻次




書目名稱Classification, (Big) Data Analysis and Statistical Learning被引頻次學(xué)科排名




書目名稱Classification, (Big) Data Analysis and Statistical Learning年度引用




書目名稱Classification, (Big) Data Analysis and Statistical Learning年度引用學(xué)科排名




書目名稱Classification, (Big) Data Analysis and Statistical Learning讀者反饋




書目名稱Classification, (Big) Data Analysis and Statistical Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:40:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:46:58 | 只看該作者
地板
發(fā)表于 2025-3-22 05:00:30 | 只看該作者
5#
發(fā)表于 2025-3-22 11:08:04 | 只看該作者
Network Analysis Methods for Classification of Roless in infant school. With this aim, we measure sociometric status by the direct observation of preschool children behaviours. The data have been collected by a longitudinal observational study. We follow the children in seven waves for 2 months. In this study, we measure relational skills of subjects
6#
發(fā)表于 2025-3-22 13:30:51 | 只看該作者
MCA-Based Community Detection coming from different methods and secondarily to obtain for each node relevant evidence about their different classification on more communities. This result can be important because the position of the single node can be interpreted differently from the other nodes on the community. In this way, i
7#
發(fā)表于 2025-3-22 18:43:16 | 只看該作者
Principal Component Analysis of Complex Data and Application to Climatologyal nature of winds is discussed in respect to the possible ways in which . may be implemented. Among others, . is proposed and compared on a small example to other methods based on real .. Then, the first results on a larger data table are illustrated.
8#
發(fā)表于 2025-3-22 23:16:14 | 只看該作者
9#
發(fā)表于 2025-3-23 03:33:54 | 只看該作者
10#
發(fā)表于 2025-3-23 07:49:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新源县| 隆尧县| 临清市| 竹溪县| 吴川市| 金阳县| 乐业县| 法库县| 长子县| 阜城县| 宜兴市| 仙游县| 满洲里市| 汪清县| 博野县| 视频| 康定县| 南昌市| 聂拉木县| 什邡市| 全椒县| 柞水县| 昔阳县| 陕西省| 大埔区| 商洛市| 太仓市| 西吉县| 沾化县| 青神县| 伊春市| 得荣县| 九龙城区| 锡林郭勒盟| 民权县| 康马县| 合山市| 龙川县| 梅州市| 平邑县| 宁阳县|