找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification - the Ubiquitous Challenge; Proceedings of the 2 Claus Weihs,Wolfgang Gaul Conference proceedings 2005 Springer-Verlag Berli

[復(fù)制鏈接]
查看: 35610|回復(fù): 65
樓主
發(fā)表于 2025-3-21 17:53:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classification - the Ubiquitous Challenge
副標(biāo)題Proceedings of the 2
編輯Claus Weihs,Wolfgang Gaul
視頻videohttp://file.papertrans.cn/228/227220/227220.mp4
概述Includes supplementary material:
叢書名稱Studies in Classification, Data Analysis, and Knowledge Organization
圖書封面Titlebook: Classification - the Ubiquitous Challenge; Proceedings of the 2 Claus Weihs,Wolfgang Gaul Conference proceedings 2005 Springer-Verlag Berli
出版日期Conference proceedings 2005
關(guān)鍵詞calculus; classification; clustering; data analysis; service-oriented computing
版次1
doihttps://doi.org/10.1007/3-540-28084-7
isbn_softcover978-3-540-25677-9
isbn_ebook978-3-540-28084-2Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書目名稱Classification - the Ubiquitous Challenge影響因子(影響力)




書目名稱Classification - the Ubiquitous Challenge影響因子(影響力)學(xué)科排名




書目名稱Classification - the Ubiquitous Challenge網(wǎng)絡(luò)公開度




書目名稱Classification - the Ubiquitous Challenge網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classification - the Ubiquitous Challenge被引頻次




書目名稱Classification - the Ubiquitous Challenge被引頻次學(xué)科排名




書目名稱Classification - the Ubiquitous Challenge年度引用




書目名稱Classification - the Ubiquitous Challenge年度引用學(xué)科排名




書目名稱Classification - the Ubiquitous Challenge讀者反饋




書目名稱Classification - the Ubiquitous Challenge讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:36 | 只看該作者
Multimedia Pattern Recognition in Soccer Video Using Time Intervalssoccer video, we compare three different machine learning techniques, i.c. C4.5 decision tree, Maximum Entropy, and Support Vector Machine. It was found that by using the TIME framework the amount of video a user has to watch in order to see almost all highlights can be reduced considerably, especially in combination with a Support Vector Machine.
板凳
發(fā)表于 2025-3-22 02:15:13 | 只看該作者
Quantitative Assessment of the Responsibility for the Disease Load in a Populatione concept of partial . has been developed. The partial . offers a unique solution for allocating shares of . to a number of exposure factors of interest, as illustrated by data from the German G?ttingen Risk, Incidence, and Prevalence Study (G.R.I.P.S.).
地板
發(fā)表于 2025-3-22 06:23:39 | 只看該作者
Bagging, Boosting and Ordinal Classificationnts of bagging and boosting, which make use of the ordinal structure and it is shown how the predictive power might be improved. Comparisons are based not only on misclassification rates but also on general distance measures, which reflect the difference between true and predicted class.
5#
發(fā)表于 2025-3-22 09:09:29 | 只看該作者
6#
發(fā)表于 2025-3-22 16:48:07 | 只看該作者
Iterative Majorization Approach to the Distance-based Discriminant Analysislems, and can be applied as a dimensionality reduction technique. In the latter case, the number of necessary discriminative dimensions can be determined exactly. The sought transformation is found as a solution to an optimization problem using iterative majorization.
7#
發(fā)表于 2025-3-22 19:28:48 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:42 | 只看該作者
What Drives Serendipity Research?,ng the jack-knife procedure, and by Kiers (2004) for CP and Tucker3 analysis using the bootstrap procedure. The present paper reviews the latter procedures, discusses their performance as reported by Kiers (2004), and illustrates them on an example data set.
9#
發(fā)表于 2025-3-23 04:18:43 | 只看該作者
10#
發(fā)表于 2025-3-23 08:18:38 | 只看該作者
Lisa N. Fink,J. César Félix-Brasdefere concept of partial . has been developed. The partial . offers a unique solution for allocating shares of . to a number of exposure factors of interest, as illustrated by data from the German G?ttingen Risk, Incidence, and Prevalence Study (G.R.I.P.S.).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳城县| 辽阳县| 扬州市| 曲松县| 巴青县| 塔河县| 龙山县| 赤城县| 黔西县| 崇左市| 清流县| 正安县| 辽宁省| 清水县| 台南市| 龙江县| 湖北省| 辉县市| 夏河县| 鸡西市| 出国| 运城市| 渑池县| 武宁县| 保亭| 濉溪县| 台江县| 吐鲁番市| 竹山县| 军事| 灵宝市| 永吉县| 辽中县| 建宁县| 花莲县| 昭通市| 江城| 盘山县| 中卫市| 册亨县| 稷山县|