找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification and Multivariate Analysis for Complex Data Structures; Bernard Fichet,Domenico Piccolo,Maurizio Vichi Conference proceeding

[復(fù)制鏈接]
查看: 55119|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:56:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classification and Multivariate Analysis for Complex Data Structures
編輯Bernard Fichet,Domenico Piccolo,Maurizio Vichi
視頻videohttp://file.papertrans.cn/228/227205/227205.mp4
概述Latest advances in data analysis methods for multidimensional data.With contributions by international experts.Special attention to new methodological contributions from theoretical and applicative po
叢書名稱Studies in Classification, Data Analysis, and Knowledge Organization
圖書封面Titlebook: Classification and Multivariate Analysis for Complex Data Structures;  Bernard Fichet,Domenico Piccolo,Maurizio Vichi Conference proceeding
描述The growing capabilities in generating and collecting data has risen an urgent need of new techniques and tools in order to analyze, classify and summarize statistical information, as well as to discover and characterize trends, andto automatically bag anomalies. This volume provides the latest advances in data analysis methods for multidimensional data which can present a complex structure: The book offers a selection of papers presented at the first Joint Meeting of the Société Francophone de Classification and the Classification and Data Analysis Group of the Italian Statistical Society. Special attention is paid to new methodological contributions fromboth the theoretical and the applicative point of views, in the fields of Clustering, Classification, Time Series Analysis, Multidimensional Data Analysis, Knowledge Discovery from Large Datasets, Spatial Statistics.
出版日期Conference proceedings 2011
關(guān)鍵詞Classification; Data Mining; Multidimensional Data; Multivariate Data Analysis; Optimal Scaling
版次1
doihttps://doi.org/10.1007/978-3-642-13312-1
isbn_softcover978-3-642-13311-4
isbn_ebook978-3-642-13312-1Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

書目名稱Classification and Multivariate Analysis for Complex Data Structures影響因子(影響力)




書目名稱Classification and Multivariate Analysis for Complex Data Structures影響因子(影響力)學(xué)科排名




書目名稱Classification and Multivariate Analysis for Complex Data Structures網(wǎng)絡(luò)公開度




書目名稱Classification and Multivariate Analysis for Complex Data Structures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classification and Multivariate Analysis for Complex Data Structures被引頻次




書目名稱Classification and Multivariate Analysis for Complex Data Structures被引頻次學(xué)科排名




書目名稱Classification and Multivariate Analysis for Complex Data Structures年度引用




書目名稱Classification and Multivariate Analysis for Complex Data Structures年度引用學(xué)科排名




書目名稱Classification and Multivariate Analysis for Complex Data Structures讀者反饋




書目名稱Classification and Multivariate Analysis for Complex Data Structures讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:15 | 只看該作者
Research-Based Teacher Evaluation of .(.). This second step determines the choice of . by using a classification criterion based on the ordering of the sample mean squared errors. The research belongs to the theory of optimal design of experiments [2], that is employed in the Taguchi Methods, used in off-line control [6].
板凳
發(fā)表于 2025-3-22 02:28:27 | 只看該作者
A Cognitive Approach to Audio Description graph and Laplacian matrix. The second step concerns the comparison between the obtained distance matrices by using Multidimensional Scaling techniques. The procedure has a wide range of application, especially for experimental purposes in social network applications where this issue has not been treated systematically.
地板
發(fā)表于 2025-3-22 07:46:58 | 只看該作者
Kulnaree Sueroj,Phatteera Sarakornborriraktimes compared to other incremental building methods and is particularly well adapted to the visualization of groups of data (i.e. clusters) thanks to the super-node structure. In addition the visualization using a force-directed algorithm respects the real distances between data.
5#
發(fā)表于 2025-3-22 11:00:40 | 只看該作者
6#
發(fā)表于 2025-3-22 14:01:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:58:29 | 只看該作者
On Building and Visualizing Proximity Graphs for Large Data Sets with Artificial Antstimes compared to other incremental building methods and is particularly well adapted to the visualization of groups of data (i.e. clusters) thanks to the super-node structure. In addition the visualization using a force-directed algorithm respects the real distances between data.
8#
發(fā)表于 2025-3-23 00:15:44 | 只看該作者
9#
發(fā)表于 2025-3-23 05:15:45 | 只看該作者
10#
發(fā)表于 2025-3-23 07:40:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁夏| 沽源县| 陕西省| 开封县| 克东县| 郎溪县| 泗阳县| 绩溪县| 托克逊县| 黄浦区| 喀什市| 岐山县| 富锦市| 海城市| 中西区| 旌德县| 改则县| 黑山县| 濮阳县| 苗栗县| 全南县| 两当县| 浦城县| 广宁县| 大同县| 怀集县| 兴安县| 泸定县| 中宁县| 通辽市| 顺平县| 定南县| 汝南县| 惠水县| 平顺县| 隆尧县| 炎陵县| 花垣县| 平乐县| 洮南市| 微山县|