找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification and Data Science in the Digital Age; Paula Brito,José G. Dias,Rebecca Nugent Conference proceedings‘‘‘‘‘‘‘‘ 2023 The Editor

[復(fù)制鏈接]
樓主: Precise
11#
發(fā)表于 2025-3-23 13:01:34 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:24 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:35 | 只看該作者
Improving Classification of Documents by Semi-supervised Clustering in a Semantic Space,ich penalizes clusterings that are distant from classification of training documents given by experts. Reduced .-means (RKM) enables simultaneously clustering of documents and extraction of factors. By projection of documents represented in the vector space model on extracted factors, documents are
14#
發(fā)表于 2025-3-23 23:12:22 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:29 | 只看該作者
16#
發(fā)表于 2025-3-24 08:31:08 | 只看該作者
Clustering Student Mobility Data in 3-Way Networks, types are linked. The proposed approach enables simplifying a 3-way network into a weighted two-mode network by considering the statistical concept of joint dependence in a multiway contingency table. Starting from a real application on student mobility data in Italian universities, a 3-way network
17#
發(fā)表于 2025-3-24 13:37:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:25 | 只看該作者
Similarity Forest for Time Series Classification,sts, during already 20?years of existence, proved to be one of the most excellent methods, showing top performance across a vast array of domains, preserving simplicity, time efficiency, still being interpretable at the same time. However, its usage is limited to multidimensional data. Similarity fo
19#
發(fā)表于 2025-3-24 19:44:26 | 只看該作者
https://doi.org/10.1007/978-981-13-0671-6nalysis (PCA) or multiple correspondence analysis (MCA), depending on the type of variable, then classifies individuals into homogeneous group, relative to the structure of the variables considered. The proposed TCI method is presented and illustrated here using a real dataset with quantitative vari
20#
發(fā)表于 2025-3-25 02:27:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀喇| 德清县| 天门市| 乐陵市| 高邑县| 永和县| 西安市| 吉林省| 琼中| 交口县| 内江市| 安乡县| 高雄县| 双桥区| 沂水县| 法库县| 新和县| 郴州市| 香格里拉县| 温泉县| 应城市| 滨海县| 张掖市| 芜湖市| 柳江县| 奉贤区| 湖州市| 枣阳市| 稷山县| 开封县| 馆陶县| 锡林浩特市| 旺苍县| 阜宁县| 扬中市| 利津县| 翁牛特旗| 宜丰县| 普安县| 施秉县| 鄢陵县|