找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification and Approximation of Periodic Functions; Alexander I. Stepanets Book 1995 Springer Science+Business Media Dordrecht 1995 Fo

[復(fù)制鏈接]
樓主: 祈求
11#
發(fā)表于 2025-3-23 09:56:11 | 只看該作者
12#
發(fā)表于 2025-3-23 16:42:45 | 只看該作者
https://doi.org/10.1007/978-3-662-47830-1In this chapter, we continue studying approximation by Fourier sums in the spaces . and . but, instead of the values .(.).(.) - .(.), we consider the linear combinations of the deviations .(?.;.), where ? .(·), . 1,2, …,., are the derivatives of a function .(·) belonging to a given class.
13#
發(fā)表于 2025-3-23 19:07:55 | 只看該作者
Reports of China’s Basic ResearchIn this chapter, we consider the values .of deviations of Fourier sums in the metric of the spaces . for functions from the classes ., where . is a certain subset in the space .. Most frequently, we take . = . = { ?;‖ ? ‖.≤1 } in this case, we set ..
14#
發(fā)表于 2025-3-24 00:42:07 | 只看該作者
Introduction,It is well known for many years that every .π -periodic summable function .(.) can be associated in a one-to-one manner with its Fourier series ., where . and ..
15#
發(fā)表于 2025-3-24 06:24:11 | 只看該作者
Simultaneous Approximation of Functions and their Derivatives by Fourier Sums,In this chapter, we continue studying approximation by Fourier sums in the spaces . and . but, instead of the values .(.).(.) - .(.), we consider the linear combinations of the deviations .(?.;.), where ? .(·), . 1,2, …,., are the derivatives of a function .(·) belonging to a given class.
16#
發(fā)表于 2025-3-24 10:16:03 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:06 | 只看該作者
Classification and Approximation of Periodic Functions
18#
發(fā)表于 2025-3-24 16:17:07 | 只看該作者
Classification and Approximation of Periodic Functions978-94-011-0115-8
19#
發(fā)表于 2025-3-24 20:54:16 | 只看該作者
20#
發(fā)表于 2025-3-25 00:47:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝坻区| 伽师县| 宜宾市| 新河县| 武定县| 庄浪县| 西安市| 镇远县| 秭归县| 无极县| 连平县| 垦利县| 文化| 镇康县| 夹江县| 高密市| 松桃| 三明市| 龙胜| 潮州市| 赤城县| 涟水县| 鄂托克旗| 准格尔旗| 普宁市| 旬阳县| 阜平县| 宁都县| 株洲县| 和龙市| 始兴县| 兖州市| 富宁县| 舒兰市| 封丘县| 中宁县| 昔阳县| 安平县| 招远市| 安多县| 长治市|