找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification and Approximation of Periodic Functions; Alexander I. Stepanets Book 1995 Springer Science+Business Media Dordrecht 1995 Fo

[復制鏈接]
樓主: 祈求
11#
發(fā)表于 2025-3-23 09:56:11 | 只看該作者
12#
發(fā)表于 2025-3-23 16:42:45 | 只看該作者
https://doi.org/10.1007/978-3-662-47830-1In this chapter, we continue studying approximation by Fourier sums in the spaces . and . but, instead of the values .(.).(.) - .(.), we consider the linear combinations of the deviations .(?.;.), where ? .(·), . 1,2, …,., are the derivatives of a function .(·) belonging to a given class.
13#
發(fā)表于 2025-3-23 19:07:55 | 只看該作者
Reports of China’s Basic ResearchIn this chapter, we consider the values .of deviations of Fourier sums in the metric of the spaces . for functions from the classes ., where . is a certain subset in the space .. Most frequently, we take . = . = { ?;‖ ? ‖.≤1 } in this case, we set ..
14#
發(fā)表于 2025-3-24 00:42:07 | 只看該作者
Introduction,It is well known for many years that every .π -periodic summable function .(.) can be associated in a one-to-one manner with its Fourier series ., where . and ..
15#
發(fā)表于 2025-3-24 06:24:11 | 只看該作者
Simultaneous Approximation of Functions and their Derivatives by Fourier Sums,In this chapter, we continue studying approximation by Fourier sums in the spaces . and . but, instead of the values .(.).(.) - .(.), we consider the linear combinations of the deviations .(?.;.), where ? .(·), . 1,2, …,., are the derivatives of a function .(·) belonging to a given class.
16#
發(fā)表于 2025-3-24 10:16:03 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:06 | 只看該作者
Classification and Approximation of Periodic Functions
18#
發(fā)表于 2025-3-24 16:17:07 | 只看該作者
Classification and Approximation of Periodic Functions978-94-011-0115-8
19#
發(fā)表于 2025-3-24 20:54:16 | 只看該作者
20#
發(fā)表于 2025-3-25 00:47:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宝清县| 澄迈县| 贺兰县| 玛纳斯县| 江永县| 行唐县| 曲阳县| 麻阳| 双牌县| 花莲市| 南丰县| 都江堰市| 丁青县| 运城市| 深泽县| 樟树市| 贡嘎县| 贺兰县| 东丽区| 云林县| 阳高县| 宜昌市| 夏河县| 巴林右旗| 安丘市| 汕头市| 申扎县| 三都| 思茅市| 临夏县| 神木县| 云南省| 内江市| 南川市| 广州市| 江山市| 缙云县| 塔河县| 卓资县| 麟游县| 安阳市|