找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification Applications with Deep Learning and Machine Learning Technologies; Laith Abualigah Book 2023 The Editor(s) (if applicable)

[復制鏈接]
查看: 6627|回復: 49
樓主
發(fā)表于 2025-3-21 19:23:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classification Applications with Deep Learning and Machine Learning Technologies
編輯Laith Abualigah
視頻videohttp://file.papertrans.cn/228/227186/227186.mp4
概述Presents recent research in Classification Applications with Deep Learning and Machine Learning Technologies.Brings together outstanding research and recent developments in the broad areas of Deep Lea
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Classification Applications with Deep Learning and Machine Learning Technologies;  Laith Abualigah Book 2023 The Editor(s) (if applicable)
描述.This book is very beneficial for early researchers/faculty who want to work in deep learning and machine learning for the classification domain. It helps them study, formulate, and design their research goal by aligning the latest technologies studies’ image and data classifications. The early start-up can use it to work with product or prototype design requirement analysis and its design and development..
出版日期Book 2023
關(guān)鍵詞Deep Learning; Machine Learning; Classification; Image Recognition; Big Data; Image Processing; Text Class
版次1
doihttps://doi.org/10.1007/978-3-031-17576-3
isbn_softcover978-3-031-17578-7
isbn_ebook978-3-031-17576-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Classification Applications with Deep Learning and Machine Learning Technologies影響因子(影響力)




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies影響因子(影響力)學科排名




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies網(wǎng)絡(luò)公開度




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies網(wǎng)絡(luò)公開度學科排名




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies被引頻次




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies被引頻次學科排名




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies年度引用




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies年度引用學科排名




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies讀者反饋




書目名稱Classification Applications with Deep Learning and Machine Learning Technologies讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:48:03 | 只看該作者
Jerzy Korczak,Aleksander Fafu?a We also compared the performance of optimizers and three levels of epoch on the performance of the model. In general, transfer learning with a pre-trained VGG16 neural network provides higher performance for the dataset; the dataset performed better with an optimizer of SGD, compared with ADAM.
5#
發(fā)表于 2025-3-22 11:09:44 | 只看該作者
6#
發(fā)表于 2025-3-22 13:35:06 | 只看該作者
7#
發(fā)表于 2025-3-22 19:00:55 | 只看該作者
Research in Security Sector Reform Policyption. Effects of variables, i.e., hidden layers, perceptrons, filter number, optimizers, and learning rate, on the proposed model are also investigated in this study. The best performing model in this study is the new proposed model with 2 CNN layers (12, 96 filters) and 6 dense layers with 147 perceptrons, achieving an accuracy of 87%.
8#
發(fā)表于 2025-3-22 22:11:59 | 只看該作者
9#
發(fā)表于 2025-3-23 02:48:43 | 只看該作者
Book 2023elps them study, formulate, and design their research goal by aligning the latest technologies studies’ image and data classifications. The early start-up can use it to work with product or prototype design requirement analysis and its design and development..
10#
發(fā)表于 2025-3-23 07:17:18 | 只看該作者
https://doi.org/10.1007/978-3-319-16348-2ollected and obtain a deep learning model which is able to classify four types of mango (Alampur Baneshan, Alphonso, Harum Manis and Keitt) automatically. In summary, the objective in this paper is to develop a deep learning algorithm to automatically classify four types of mango cultivar.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
清苑县| 谷城县| 德保县| 囊谦县| 正宁县| 祁阳县| 衡山县| 应城市| 鹤岗市| 陈巴尔虎旗| 梁河县| 五河县| 酉阳| 云和县| 芜湖市| 福州市| 开封市| 万安县| 武定县| 夏邑县| 镇赉县| 昭平县| 卓资县| 木兰县| 油尖旺区| 三穗县| 北海市| 南丰县| 德化县| 油尖旺区| 桦甸市| 仁怀市| 弋阳县| 天峨县| 永修县| 来凤县| 衡水市| 凉城县| 克东县| 龙井市| 南江县|