找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 2020Latest edition The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Jurisdiction
11#
發(fā)表于 2025-3-23 11:40:39 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:07 | 只看該作者
Kristin L. Huffman,Andrea Giordanors appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.
13#
發(fā)表于 2025-3-23 22:05:55 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:22 | 只看該作者
15#
發(fā)表于 2025-3-24 06:07:11 | 只看該作者
Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ., then Jacobi’s principle states
16#
發(fā)表于 2025-3-24 10:25:57 | 只看該作者
17#
發(fā)表于 2025-3-24 11:06:29 | 只看該作者
18#
發(fā)表于 2025-3-24 15:40:21 | 只看該作者
,Poincaré Surface of Sections, Mappings,o-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the .?+?1-th piercing point depends only on the .th.
19#
發(fā)表于 2025-3-24 21:46:14 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:53 | 只看該作者
https://doi.org/10.1007/978-3-030-93186-5..) is the generator of a canonical transformation to new constant momenta .. (all .. are ignorable), and the new Hamiltonian depends only on the ..: .?=?.?=?.(..). Besides, the following canonical equations are valid
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇左市| 称多县| 浦东新区| 盈江县| 固镇县| 博罗县| 威信县| 西青区| 界首市| 温州市| 淮南市| 高陵县| 织金县| 金阳县| 忻城县| 汉源县| 全南县| 金溪县| 金塔县| 灵丘县| 镇远县| 邳州市| 小金县| 辽宁省| 民乐县| 横峰县| 墨脱县| 菏泽市| 宽城| 龙口市| 鲁甸县| 崇礼县| 盐源县| 兰坪| 伊川县| 五家渠市| 临夏县| 贵溪市| 冕宁县| 永靖县| 新竹市|