找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20175th edition Springer International Publishi

[復(fù)制鏈接]
樓主: 專家
51#
發(fā)表于 2025-3-30 10:23:52 | 只看該作者
Esra’a Alshdaifat,Frans Coenen,Keith Dureso-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the . + 1-th p
52#
發(fā)表于 2025-3-30 14:04:21 | 只看該作者
53#
發(fā)表于 2025-3-30 17:13:15 | 只看該作者
3D Spatial Reasoning Using the Clock Modele right track by—none other, of course, than—Dirac.The first step on the way to quantizing a system entails rewriting the problem in Lagrangian form. We know from classical mechanics that this is a compact method with which to derive equations of motion. Let us refresh our memory by considering the
54#
發(fā)表于 2025-3-30 22:51:08 | 只看該作者
Silja Meyer-Nieberg,Erik Kropattablish the formal connection between operator and path integral formalism. Our objective is to introduce the generating functional into quantum mechanics. Naturally we want to generate transition amplitudes. The problem confronting us is how to transcribe operator quantum mechanics as expressed in
55#
發(fā)表于 2025-3-31 02:55:50 | 只看該作者
cs with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field..978-3-319-86369-6978-3-319-58298-6
56#
發(fā)表于 2025-3-31 06:08:38 | 只看該作者
57#
發(fā)表于 2025-3-31 11:23:01 | 只看該作者
58#
發(fā)表于 2025-3-31 16:41:34 | 只看該作者
3D Spatial Reasoning Using the Clock Modelical mechanics, the motion of a particle between . and . is described by the classical path . which makes the action functional (for short: action) an extremum. We thus assign a number, the action ., to each path leading from . to .:
59#
發(fā)表于 2025-3-31 18:27:02 | 只看該作者
60#
發(fā)表于 2025-4-1 01:40:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜兰县| 兰西县| 库车县| 吉隆县| 泸水县| 陆川县| 南阳市| 华亭县| 南通市| 钟祥市| 靖远县| 乳山市| 黄石市| 衡阳县| 西乌珠穆沁旗| 孝义市| 当涂县| 佳木斯市| 崇礼县| 盐边县| 靖安县| 清流县| 射阳县| 青铜峡市| 盐池县| 呼和浩特市| 读书| 察雅县| 鲁山县| 德令哈市| 榕江县| 同江市| 平果县| 湾仔区| 秭归县| 河池市| 勃利县| 五大连池市| 通山县| 沧州市| 黑龙江省|