找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Grant
61#
發(fā)表于 2025-4-1 04:53:20 | 只看該作者
62#
發(fā)表于 2025-4-1 07:43:38 | 只看該作者
,Poincaré Surface of Sections, Mappings,o-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the . + 1-th p
63#
發(fā)表于 2025-4-1 11:54:35 | 只看該作者
The KAM Theorem,ator .(θ., .) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江华| 壶关县| 霍林郭勒市| 阿鲁科尔沁旗| 涿鹿县| 潮州市| 东方市| 开阳县| 蚌埠市| 泸水县| 克东县| 兴安盟| 湛江市| 刚察县| 喀喇| 苍溪县| 来宾市| 无为县| 微山县| 营口市| 庆阳市| 潜江市| 邛崃市| 胶州市| 峡江县| 鞍山市| 柏乡县| 临桂县| 两当县| 宽甸| 本溪| 巴楚县| 扎赉特旗| 南充市| 甘德县| 南江县| 文昌市| 孝感市| 济源市| 章丘市| 义乌市|