找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Modern Branching Processes; Krishna B. Athreya,Peter Jagers Book 1997 Springer Science+Business Media New York 1997 Branchin

[復(fù)制鏈接]
樓主: Osteopenia
11#
發(fā)表于 2025-3-23 09:58:39 | 只看該作者
12#
發(fā)表于 2025-3-23 17:27:56 | 只看該作者
Incidence and Arrangement Problems,alks with drift: e.g., is the speed on Galton-Watson trees monotonic in the drift parameter? These random walks have been used in Monte-Carlo algorithms for sampling from the vertices of a tree; in general, their behavior reflects the size and regularity of the underlying tree. Random walks are rela
13#
發(fā)表于 2025-3-23 18:05:47 | 只看該作者
14#
發(fā)表于 2025-3-24 01:07:37 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:55 | 只看該作者
16#
發(fā)表于 2025-3-24 08:33:16 | 只看該作者
Stochastic Monotonicity and Branching Processes,o con-vergence in probability or a.s. of suitably normed branching processes is a law of large numbers for some independent copies of random variables. Applications to branching processes in varying environment are given.
17#
發(fā)表于 2025-3-24 11:12:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:57:44 | 只看該作者
A Criterion of Boundedness of Discrete Branching Random Walk,on of a parent. A necessary and sufficient condition is given for the random variable.to be finite. Here .. is the position of the k-th offspring in the n-th generation. The condition is stated in terms of a naturally arising linear functional equation. A number of examples are discussed, where the condition may be verified.
19#
發(fā)表于 2025-3-24 20:16:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:33:50 | 只看該作者
A Standard for Test and Diagnosis,nsions are discussed. The relationship of the results with deterministic theory is also indicated. Finally the theory developed is used to re-prove smoothly (and improve slightly) results on certain data-storage algorithms arising in computer science.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇礼县| 延寿县| 达日县| 景洪市| 女性| 阿克苏市| 黄平县| 遵化市| 横峰县| 新宾| 武隆县| 板桥市| 山东省| 枣庄市| 菏泽市| 平武县| 昌宁县| 宜兰县| 府谷县| 屏东县| 白水县| 达州市| 四会市| 内江市| 武平县| 普陀区| 太谷县| 葵青区| 兴山县| 哈尔滨市| 前郭尔| 上杭县| 景洪市| 长治市| 大方县| 北辰区| 招远市| 定安县| 广灵县| 藁城市| 临江市|