找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Modern Branching Processes; Krishna B. Athreya,Peter Jagers Book 1997 Springer Science+Business Media New York 1997 Branchin

[復(fù)制鏈接]
樓主: Osteopenia
11#
發(fā)表于 2025-3-23 09:58:39 | 只看該作者
12#
發(fā)表于 2025-3-23 17:27:56 | 只看該作者
Incidence and Arrangement Problems,alks with drift: e.g., is the speed on Galton-Watson trees monotonic in the drift parameter? These random walks have been used in Monte-Carlo algorithms for sampling from the vertices of a tree; in general, their behavior reflects the size and regularity of the underlying tree. Random walks are rela
13#
發(fā)表于 2025-3-23 18:05:47 | 只看該作者
14#
發(fā)表于 2025-3-24 01:07:37 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:55 | 只看該作者
16#
發(fā)表于 2025-3-24 08:33:16 | 只看該作者
Stochastic Monotonicity and Branching Processes,o con-vergence in probability or a.s. of suitably normed branching processes is a law of large numbers for some independent copies of random variables. Applications to branching processes in varying environment are given.
17#
發(fā)表于 2025-3-24 11:12:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:57:44 | 只看該作者
A Criterion of Boundedness of Discrete Branching Random Walk,on of a parent. A necessary and sufficient condition is given for the random variable.to be finite. Here .. is the position of the k-th offspring in the n-th generation. The condition is stated in terms of a naturally arising linear functional equation. A number of examples are discussed, where the condition may be verified.
19#
發(fā)表于 2025-3-24 20:16:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:33:50 | 只看該作者
A Standard for Test and Diagnosis,nsions are discussed. The relationship of the results with deterministic theory is also indicated. Finally the theory developed is used to re-prove smoothly (and improve slightly) results on certain data-storage algorithms arising in computer science.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青河县| 随州市| 溧水县| 武陟县| 色达县| 巫山县| 天全县| 怀远县| 彰化县| 从化市| 鹤岗市| 棋牌| 芒康县| 通山县| 和田市| 揭西县| 扎鲁特旗| 东乌珠穆沁旗| 金昌市| 奉贤区| 手游| 阿图什市| 通州市| 遵化市| 星子县| 万年县| 海阳市| 潜山县| 江安县| 永德县| 吉木萨尔县| 合山市| 红原县| 军事| 柯坪县| 深水埗区| 京山县| 禹州市| 沂源县| 耒阳市| 申扎县|