找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Topics in Complex Function Theory; Reinhold Remmert Textbook 1998 Springer Science+Business Media New York 1998 analytic functio

[復(fù)制鏈接]
樓主: FAD
31#
發(fā)表于 2025-3-26 22:14:39 | 只看該作者
Mary Lynn Hamilton,Stefinee Pinnegariance theorem. The property of “having the same number of holes” is defined by how . lies in ? and at first glance is not an invariant of .. In order to prove the invariance of the number of holes, we assign every domain in ? its .. The . of this group, called the ., is a biholomorphic (even topological) invariant of the domain.
32#
發(fā)表于 2025-3-27 01:17:43 | 只看該作者
33#
發(fā)表于 2025-3-27 08:43:57 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:03 | 只看該作者
35#
發(fā)表于 2025-3-27 17:06:50 | 只看該作者
Kamden K. Strunk,Jasmine S. Bettiesor many arguments in analysis. But caution is necessary: There are sequences of real-analytic functions from the interval [0, 1] into a . interval that have no convergent subsequences. A nontrivial example is the sequence sin 2.; cf. 1.1.
36#
發(fā)表于 2025-3-27 21:09:29 | 只看該作者
Jeff Walls,Samantha E. Holquistnctions without knowing closed analytic expressions (such as integral formulas or power series) for them. Furthermore, analytic properties of the mapping functions can be obtained from geometric properties of the given domains.
37#
發(fā)表于 2025-3-27 22:36:08 | 只看該作者
38#
發(fā)表于 2025-3-28 04:21:57 | 只看該作者
Holomorphic Functions with Prescribed Zeroshey are built up from Weierstrass factors . and converge normally in regions that contain ?. (product theorem 1.3). In Section 2 we develop, among other things, the theory of the greatest common divisor for integral domains .(.).
39#
發(fā)表于 2025-3-28 06:30:43 | 只看該作者
Iss’sa’s Theorem. Domains of Holomorphym — that . domain in ? is a domain of holomorphy. In Section 3 we conclude by discussing simple examples of functions whose domains of holomorphy have the form .; Cassini domains, in particular, are of this form.
40#
發(fā)表于 2025-3-28 13:28:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南涧| 闽侯县| 南昌县| 赞皇县| 会同县| 涿鹿县| 化隆| 车致| 雷波县| 罗源县| 扎囊县| 沂南县| 金塔县| 盘锦市| 耒阳市| 图们市| 关岭| 长汀县| 谢通门县| 甘肃省| 东乡县| 大竹县| 红桥区| 南京市| 蚌埠市| 资源县| 页游| 天水市| 台安县| 汝南县| 志丹县| 宿松县| 泊头市| 榆社县| 通榆县| 新建县| 股票| 五峰| 察哈| 互助| 奎屯市|