找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Theory of Algebraic Numbers; Paulo Ribenboim Textbook 2001Latest edition Springer Science+Business Media New York 2001 algebra.a

[復(fù)制鏈接]
樓主: 租期
31#
發(fā)表于 2025-3-26 22:03:48 | 只看該作者
32#
發(fā)表于 2025-3-27 04:13:01 | 只看該作者
33#
發(fā)表于 2025-3-27 08:26:22 | 只看該作者
Commutative FieldsFor the convenience of the reader we recall some definitions and facts about commutative fields.
34#
發(fā)表于 2025-3-27 09:33:23 | 只看該作者
Residue ClassesIn this chapter, we study residue classes modulo a natural number. This leads to the consideration of groups. Therefore it is convenient to recall that if . is a finite group, the number of elements of . is called the . of ., denoted by ..
35#
發(fā)表于 2025-3-27 16:22:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:56:48 | 只看該作者
Algebraic IntegersThe arithmetic of the field of rational numbers is mainly the study of divisibility properties with respect to the ring of integers.
37#
發(fā)表于 2025-3-28 00:01:10 | 只看該作者
Integral Basis, DiscriminantWe have seen in the numerical examples of the preceding chapter that the ring of algebraic integers of a quadratic number field, and also of the cyclotomic field ?(ζ) (where ζ is a primitive .th root of unity), are free finitely generated Abelian groups.
38#
發(fā)表于 2025-3-28 05:55:02 | 只看該作者
The Decomposition of IdealsWe have shown that the ring . of algebraic integers of an algebraic number field is Noetherian and integrally closed. However, it is not true in general that . is a principal ideal domain.
39#
發(fā)表于 2025-3-28 10:18:28 | 只看該作者
The Norm and Classes of IdealsWe know already that the ring . of integers of an algebraic number field . need not be a principal ideal domain. In this chapter, we associate with every field . a numerical invariant ., which measures the extent to which . deviates from being a principal ideal domain. . will be equal to 1 if and only if . is a principal ideal domain.
40#
發(fā)表于 2025-3-28 14:12:11 | 只看該作者
Estimates for the DiscriminantIn this chapter we study the discriminant. A method of “Geometry of Numbers” is used to provide sharper estimates for the discriminant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉兴市| 贡山| 德庆县| 友谊县| 吉首市| 高要市| 砀山县| 寿阳县| 集贤县| 博湖县| 喀喇沁旗| 昌乐县| 拜泉县| 嘉禾县| 兴安盟| 洛川县| 克拉玛依市| 德州市| 准格尔旗| 三穗县| 射阳县| 永济市| 东明县| 满洲里市| 厦门市| 河南省| 永胜县| 安远县| 德令哈市| 花垣县| 安新县| 钟山县| 方城县| 清涧县| 襄樊市| 五大连池市| 旌德县| 大安市| 临武县| 贞丰县| 根河市|